Bmc Genomics
-
Pseudomonas aeruginosa (PA) is an opportunistic Gram-negative bacterium that causes serious life threatening and nosocomial infections including pneumonia. PA has the ability to alter host genome to facilitate its invasion, thus increasing the virulence of the organism. Sphingosine-1- phosphate (S1P), a bioactive lipid, is known to play a key role in facilitating infection. Sphingosine kinases (SPHK) 1&2 phosphorylate sphingosine to generate S1P in mammalian cells. We reported earlier that Sphk2-/- mice offered significant protection against lung inflammation, compared to wild type (WT) animals. Therefore, we profiled the differential expression of genes between the protected group of Sphk2-/- and the wild type controls to better understand the underlying protective mechanisms related to the Sphk2 deletion in lung inflammatory injury. Whole transcriptome shotgun sequencing (RNA-Seq) was performed on mouse lung tissue using NextSeq 500 sequencing system. ⋯ Using Sphk2-/- mice and differential gene expression analysis, we have shown here that S1P/SPHK2 signaling could play a key role in promoting PA pneumonia. The identified genes promote inflammation and suppress others that naturally inhibit inflammation and host defense. Thus, targeting SPHK2/S1P signaling in PA-induced lung inflammation could serve as a potential therapy to combat PA-induced pneumonia.
-
Melanocytes are derived from neural crest stem cells in the embryonic stage. In mature melanocytes, a series of complex enzyme-catalyzed reactions leads to the production of melanins, which determine the hair and skin colors of animals. The process of melanogenesis is complex and can be regulated by mRNA, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) genes. MiRNAs are a type of endogenous noncoding RNA approximately 22 nt in size that predominantly regulate gene expression by inhibiting translation. miR-380-3p is a candidate miRNA potentially related to melanogenesis. To better understand the mechanism of miR-380-3p melanogenesis regulation, plasmids to overexpress or knockdown miR-380-3p were transfected into alpaca melanocytes, and their effects on melanogenesis were evaluated. ⋯ The results demonstrated that miR-380-3p targeted SOX6 to regulate melanogenesis by influencing β-catenin and MITF transcription and translation, which reduced the expression of downstream genes, including TYR, TYRP1, and DCT. These results provide insights into the mechanisms through which miR-380-3p controls melanogenesis.