Experimental cell research
-
Taxol is an anticancer drug that triggers apoptosis in a wide spectrum of cancers such as ovarian, breast, lung, head and neck, and bladder carcinoma by both caspase-dependent and -independent apoptosis mechanisms. However, the exact signaling pathways involved in taxol-induced apoptosis strongly depend on the cellular background and they are not completely established yet. In this study we demonstrate that taxol induces caspase-3-independent apoptosis in NIH3T3 cells by a calpain-mediated mechanism. ⋯ In addition, we reveal that poly (ADP-ribose) polymerase (PARP) was processed by calpain in taxol-treated cells and by caspase-3 after calpain inhibition. In conclusion, these results demonstrate for the first time that calpain could play an important role modulating taxol-induced apoptosis. Further studies are needed to address the potentiality of inducing apoptosis by a combined use of taxol and calpain inhibitors in cells with increased calpain activity.
-
Optimedin, also known as olfactomedin 3, belongs to a family of olfactomedin domain-containing proteins. It is expressed in neural tissues and Pax6 is involved in the regulation of its promoter. To study possible effects of optimedin on the differentiation of neural cells, we produced stably transfected PC12 cell lines expressing optimedin under a tetracycline-inducible promoter. ⋯ Expression of optimedin induced Ca(2+)-dependent aggregation of NGF-stimulated PC12 cells and this aggregation was blocked by the expression of N-cadherin siRNA. Expression of optimedin also changed the organization of the actin cytoskeleton and inhibited neurite outgrowth in NGF-stimulated PC12 cells. We suggest that expression of optimedin stimulates the formation of adherent and tight junctions on the cell surface and this may play an important role in the differentiation of the brain and retina through the modulation of cytoskeleton organization, cell-cell adhesion and migration.