Experimental cell research
-
Advanced glycosylation end products (AGEs) formation is correlated with the pathogenesis of diabetic neuronal damage, but its links with oxidative stress are still not well understood. Metformin, one of the most widely used anti-diabetic drugs, exerts its effects in part by activation of AMP-activated protein kinase (AMPK). Once activated, AMPK regulates many pathways central to metabolism and energy balance including, glucose uptake, glycolysis and fatty acid oxidation. ⋯ Furthermore, hNSCs exposed to AGEs had significantly lower mRNA levels among other components of normal cellular oxidative defenses (GSH, Catalase and HO-1), which were all rescued by co-treatment with metformin. This metformin-mediated protective effect on hNSCs for of both oxidative stress and oxidative defense genes by co-treatment with metformin was blocked by the addition of an AMPK antagonist (Compound C). These findings unveil the protective role of AMPK-dependent metformin signaling during AGE mediated oxidative stress in hNSCs, and suggests patients undergoing AGE-mediated neurodegeneration may benefit from the novel therapeutic use of metformin.
-
Lung cancer remains a leading cause of cancer-related mortality, with metastatic progression remaining the single largest cause of lung cancer mortality. Hence it is imperative to determine reliable biomarkers for lung cancer prognosis. We performed quantitative real-time PCR (qRT-PCR) analysis to explore epithelial-mesenchymal transition (EMT) inducers that regulate EMT process in three patients with advanced lung cancer disease. ⋯ Upregulation of PPARGC1A transcript expression was independent of a differential upregulation of the upstream AMP-dependent protein kinase (AMPK) activation or steady state expression of the silent mating type information regulation 2 homolog 1 (SIRT1). Xenograft tail vein colonization assays proved that the high expression of PPARGC1A was a prerequisite for metastatic progression of lung cancer to brain. Our results indicate that PPARGC1A might be a potential biomarker for lung cancer prognosis.
-
MicroRNAs (miRNAs) have been shown to be involved in the pathogenesis of intervertebral disc degeneration (IDD). This experiment was designed to study the expression and role of the miRNA, miR-132, in IDD. MiR-132 expression in human nucleus pulposus (NP) tissue was assessed by quantitative real-time PCR. ⋯ In addition, we showed that miR-132 inhibition effectively attenuated NP ECM degradation in IDD in vivo. Our findings demonstrated that miR-132 promotes ECM degradation by human NP cells by direct targeting of GDF5. Hence, miR-132 represents a potential therapeutic target in the treatment of IDD.