Crit Rev Immunol
-
Recognition of the pathogen-associated molecular pattern (PAMP) by host Toll-like receptors (TLR) is an important component of the innate immune response for countering against invading viruses, bacteria, and fungi. Upon PAMP recognition, the TLR induces intracellular signaling cascades that involve adapter, signalosome, and transcription factor complexes and result in the production of both pro- and anti-inflammatory cytokines and chemokines. An inflammatory response for a short duration can be beneficial because it helps to clear the infectious agent. ⋯ Therefore, fine control of inflammation in the TLR pathway is highly desirable for effective host defense. In this article, we review intrinsic control mechanisms that include a balance between pro-inflammatory and anti-inflammatory cytokines and chemokines, production of host effectors, and regulation at the level of adapter, signalosome, and transcription factor complexes in the TLR pathways. We also discuss how understanding of the TLR signaling steps leads to the development of small-molecule drugs that can interfere with the formation of active adapter, signalosome, and adapter complexes.
-
Lymphangioleiomyomatosis (LAM), a rare cystic lung disease with multi-organ involvement, occurs primarily in women of childbearing age. LAM can present sporadically or in association with tuberous sclerosis complex (TSC). Loss of lung function in patients with LAM can be attributed to the dysregulated growth of LAM cells, with dysfunctional TSC1 or TSC2 genes, which encode hamartin and tuberin, respectively, leading to hyperactivation of the mammalian target of rapamycin (mTOR). ⋯ Although many chemokines and their receptors could influence LAM cell mobilization, we propose that a positive-feedback loop is generated when dysfunctional TSC2 is present in LAM cells. We identified a group of chemokine receptors that is expressed in LAM cells and differs from those on smooth muscle and melanoma cells (Malme-3M). Chemokines have been implicated in tumor metastasis, and our data suggest a role for chemokines in LAM cell mobilization and thereby in the pathogenesis of LAM.