Clin Cancer Res
-
Small-cell lung cancer is often characterized by rapid growth and metastatic spread. Because tumor growth and metastasis are angiogenesis dependent, there is great interest in therapeutic strategies that aim to inhibit tumor angiogenesis. ⋯ These results suggest that ZD6474 may be of potential therapeutic value in inhibiting the growth of metastatic small-cell lung cancer in humans. Phase II trials with ZD6474 are currently ongoing in a range of solid tumors.
-
The serine/threonine kinase inhibitor flavopiridol targets multiple cyclin-dependent kinases, induces checkpoint arrest, and interrupts transcriptional elongation. We designed a phase I clinical trial using a timed sequential therapy approach where flavopiridol was given for the dual purpose of initial cytoreduction and enhancing cell cycle progression of the remaining leukemia cell cohort followed by cycle-dependent drugs 1-beta-D-arabinofuranosylcytosine (ara-C) and mitoxantrone. ⋯ Our data suggest that flavopiridol is cytotoxic to leukemic cells and, when followed by ara-C and mitoxantrone, exerts biological and clinical effects in patients with relapsed and refractory acute leukemias. These findings warrant continuing development of flavopiridol at 50 mg/m2/d x 3 days in combination with cytotoxic and biological agents for acute leukemias.
-
To analyze the prognostic significance of six epigenetic biomarkers (APC, Cyclin D2, GSTP1, TIG1, Rassf1A, and RARbeta2 promoter hypermethylation) in a homogeneous group of prostate cancer patients, following radical prostatectomy alone. ⋯ Methylation status of selected genes in the prostate cancer specimen may predict for time to recurrence in Gleason 3 + 4 = 7 patients undergoing prostatectomy. These results should be validated in a larger and unselected cohort.
-
Poly(ADP-ribose) polymerase (PARP) inhibitors enhance DNA topoisomerase I (topo I) poison-induced cytotoxicity and antitumor activity in vitro and in vivo, but the mechanism has not been defined. We investigated the role of PARP-1 in the response to topo I poisons using PARP-1-/- and PARP-1+/+ mouse embryonic fibroblasts and the potent PARP-1 inhibitor, AG14361 (Ki < 5 nmol/L). PARP-1-/- mouse embryonic fibroblasts were 3-fold more sensitive to topotecan than PARP-1+/+ mouse embryonic fibroblasts (GI50, 21 and 65 nmol/L, respectively). ⋯ We investigated the DNA repair mechanism involved using a panel of DNA repair-deficient Chinese hamster ovary cells. AG14361 significantly potentiated camptothecin-mediated cytotoxicity in all cells, except the base excision repair-deficient EM9 cells. Therefore, the most likely mechanism for the potentiation of topo I poison-mediated cytotoxicity by AG14361 is via PARP-1-dependent base excision repair.