Clin Cancer Res
-
The treatment of patients with metastatic non-small cell lung cancer (NSCLC) is slowly evolving from empirical cytotoxic chemotherapy to personalized treatment based on specific molecular alterations. Despite this 10-year evolution, targeted therapies have not been studied adequately in patients with resected NSCLC who have clearly defined actionable mutations. The advent of next-generation sequencing has now made it possible to characterize genomic alterations in unprecedented detail. ⋯ ALCHEMIST will also contain a large discovery component that will provide an opportunity to incorporate genomic studies to fully understand the clonal architecture, clonal evolution, and mechanisms of resistance to therapy. In this review, we describe the concept, rationale, and outline of ALCHEMIST and the plan for genomic studies in patients with lung adenocarcinoma. Clin Cancer Res; 21(24); 5439-44. ©2015 AACR.
-
Randomized Controlled Trial Multicenter Study
Analysis of KRAS/NRAS Mutations in a Phase III Study of Panitumumab with FOLFIRI Compared with FOLFIRI Alone as Second-line Treatment for Metastatic Colorectal Cancer.
We evaluated the influence of RAS mutation status on the treatment effect of panitumumab in a prospective-retrospective analysis of a randomized, multicenter phase III study of panitumumab plus fluorouracil, leucovorin, and irinotecan (FOLFIRI) versus FOLFIRI alone as second-line therapy in patients with metastatic colorectal cancer (mCRC; ClinicalTrials.gov, NCT0039183). ⋯ Patients with RAS mutations were unlikely to benefit from panitumumab-FOLFIRI and the benefit-risk of panitumumab-FOLFIRI was improved in the wild-type RAS population compared with the wild-type KRAS exon 2 population. These findings support RAS testing for patients with mCRC. Clin Cancer Res; 21(24); 5469-79. ©2015 AACR.See related commentary by Salazar and Ciardiello, p. 5415.
-
There are no validated markers for predicting benefit from angiogenesis inhibitors or classifying tumors with distinct angiogenic phenotypes. In patients with non-small cell lung cancer treated with bevacizumab and erlotinib, Franzini and colleagues find that angiogenesis- and hypoxia-associated gene expression signatures predict tumor response and/or clinical outcome, and may define distinct angiogenic patterns.