Oncology Ny
-
Three-dimensional (3D) image-based treatment planning and new delivery technologies have spurred the implementation of external beam radiation therapy techniques, in which the high-dose region is conformed much more closely to the target volume than previously possible, thus reducing the volume of normal tissues receiving a high dose. This form of external beam irradiation is referred to as 3D conformal radiation therapy (3DCRT). 3DCRT is not just an add-on to the current radiation oncology process; it represents a radical change in practice, particularly for the radiation oncologist. Defining target volumes and organs at risk in 3D by drawing contours on CT images on a slice-by-slice basis, as opposed to drawing beam portals on a simulator radiograph, can be challenging, because radiation oncologists are generally not well trained in cross-sectional imaging. ⋯ Also, the fact that there is much greater dose heterogeneity for both the target and normal critical structures with IMRT compared to traditional irradiation techniques challenges current radiation oncology planning principles. However, this new process of planning and treatment delivery shows significant potential for improving the therapeutic ratio. In addition, while inefficient today, these systems, when fully developed, will improve the efficiency with which external beam radiation therapy can be planned and delivered, thus lowering costs.