Aust J Physiother
-
Clinical Trial
Effect of endotracheal suction on lung dynamics in mechanically-ventilated paediatric patients.
Endotracheal suctioning is performed regularly in ventilated infants and children to remove obstructive secretions. The effect of suctioning on respiratory mechanics is not known. This study aimed to determine the immediate effect of endotracheal suctioning on dynamic lung compliance, tidal volume, and airway resistance in mechanically-ventilated paediatric patients by means of a prospective observational clinical study. ⋯ Although the majority of patients (68.5%) experienced a drop in dynamic compliance following suctioning, dynamic compliance increased in 31.5% of patients after the procedure. This study demonstrates that endotracheal suctioning frequently causes an immediate drop in dynamic compliance and expired tidal volume in ventilated children with variable lung pathology, intubated with small endotracheal tubes, probably indicating loss of lung volume caused by the suctioning procedure. There is no evidence that suctioning reduces airway resistance.
-
Randomized Controlled Trial
Evaluating two implementation strategies for whiplash guidelines in physiotherapy: a cluster randomised trial.
Are implementation strategies involving education any more effective than mere dissemination of clinical practice guidelines in changing physiotherapy practice and reducing patient disability after acute whiplash? ⋯ Although the active implementation program increased guideline-consistent practice, patient outcomes and cost of care were not affected.
-
Vibration is a manual technique used widely to assist with the removal of pulmonary secretions. Little is known about how vibration is applied or its effect on the respiratory system. The purpose of this study was to describe mechanical consequences of vibration on the chest wall of a normal subject and the effects of vibration on expiratory flow rates and volumes. ⋯ The mean (SD) change in chest wall circumference and frequency of vibration were 0.8 cm (SD 0.4) and 5.5 Hz (SD 0.8) respectively. The mean peak expiratory flow rate was 0.97 l/s (SD 0.27). Peak expiratory flow rates with vibration were less than 20% of those achieved with cough or huff from high lung volume but greater than with chest wall compression, chest wall oscillation, relaxed expiration from total lung capacity, sham treatment or tidal breathing.
-
Randomized Controlled Trial
Manual vibration increases expiratory flow rate via increased intrapleural pressure in healthy adults: an experimental study.
What is the relationship between vibration of the chest wall and the resulting chest wall force, chest wall circumference,intrapleural pressure, and expiratory flow rate? Is the change in intrapleural pressure during vibration the sum of the intrapleural pressure due to recoil of the lung, chest wall compression, and chest wall oscillation? ⋯ During vibration the chest behaves as a highly linear system. Changes in intrapleural pressure occurring during vibration appear to be the sum of changes in pressure due to lung recoil and the compressive and oscillatory components of the technique, which suggests that all three components are required to optimise expiratory flow.