Bmc Complem Altern M
-
Bmc Complem Altern M · Dec 2016
Activation of hippocampal MEK1 contributes to the cumulative antinociceptive effect of electroacupuncture in neuropathic pain rats.
Electroacupuncture (EA) intervention can relieve a variety of pain; however, optimal EA protocols have not been clearly determined. In addition, although central mitogen-activated protein kinase kinase (MEK) signaling has been shown to be involved in the antinociceptive effect of acupuncture stimulation, its characteristics at different time-points of EA intervention have not been fully elucidated. Therefore, the present study investigated the relationship between the effects of different numbers of EA intervention sessions and the activation of MEK1 in the hippocampus and hypothalamus in a rat model of neuropathic pain. ⋯ EA intervention can induce time-dependent cumulative analgesia in neuropathic pain rats after 4 successive sessions of daily EA intervention, which is at least in part related to the activation of hippocampal MEK1.
-
Bmc Complem Altern M · Dec 2016
Antiplatelet and antithrombotic effects of cordycepin-enriched WIB-801CE from Cordyceps militaris ex vivo, in vivo, and in vitro.
A species of the fungal genus Cordyceps has been used as a complementary and alternative medicine of traditional Chinese medicine, and its major component cordycepin and cordycepin-enriched WIB-801CE are known to have antiplatelet effects in vitro. However, it is unknown whether they have also endogenous antiplatelet and antithrombotic effects. In this study, to resolve these doubts, we prepared cordycepin-enriched WIB-801CE, an ethanol extract from Cordyceps militaris-hypha, then evaluated its ex vivo, in vivo, and in vitro antiplatelet and antithrombotic effects. ⋯ WIB-801CE inhibited collagen- and ADP-induced platelet activation and its associated thrombus formation ex vivo and in vivo. These were resulted from down-regulation of TXA2 production and its related AA release and TXAS activity, and p38MAPK and ERK2 activation. These results suggest that WIB-801CE has therapeutic potential to treat platelet activation-mediated thrombotic diseases in vivo.