Endocrinology
-
Hypothalamic-pituitary-adrenal (HPA) responses remain intact or increase after chronic or repeated stress despite robust levels of circulating glucocorticoids that would be expected to restrain the responsiveness of the axis. The purpose of this study was to determine whether chronic stress altered corticosteroid receptor messenger RNA (mRNA) levels at any locus known to mediate glucocorticoid feedback on HPA function (i.e. hippocampus or hypothalamus), whether such effects were glucocorticoid dependent, and whether changes in corticosteroid receptor function could potentially contribute to the putative shift from corticotropin-releasing hormone (CRH) to arginine vasopressin (AVP) in the hypothalamic paraventricular nucleus (PVN) in the modulation of pituitary adrenal function occurring during chronic stress. We compared the stress responsiveness of sham-operated rats to that of adrenalectomized rats using a moderate dose of corticosterone (CORT) pellet replacement (ADX + CORT group). ⋯ After repeated stress in ADX+CORT rats, both PVN CRH and AVP mRNA levels showed robust responses, with a relatively greater increase in AVP mRNA. These data indicate that a CORT-mediated decrease in hippocampal and hypothalamic glucocorticoid receptor mRNA levels is not the only mechanism contributing to the maintenance of a robust HPA response after repeated stress. Similarly, we postulate that the relative shift from CRH to AVP in the PVN after repeated stress is mediated by both a greater sensitivity of AVP to CORT negative feedback and CORT-independent mechanisms.