Minim Invas Neurosur
-
Minim Invas Neurosur · Apr 2003
Comparative StudyImage-guided removal of supratentorial cavernomas in critical brain areas: application of neuronavigation and intraoperative magnetic resonance imaging.
In a retrospective study the postoperative results of 26 patients operated on for supratentorial cavernous hemangiomas either deep-seated or near eloquent brain areas are summarized. An exact surgical approach to these lesions is essential to prevent neurological deterioration. Three different navigation systems were used and compared according to their clinical applicability. ⋯ The study indicates that the application of neuronavigation allows surgery on supratentorial cavernous hemangiomas in critical brain areas with low morbidity. The intraoperative visualization of eloquent cortex areas by integration of functional data allows a fast identification and exemption of eloquent brain areas, preventing neurological deterioration. Furthermore, the intraoperative MR resection control ensures a complete resection and illustrates the minimal invasive approach.
-
Minim Invas Neurosur · Apr 2003
Comparative StudyNeuronavigation combined with electrophysiological monitoring for surgery of lesions in eloquent brain areas in 42 cases: a retrospective comparison of the neurological outcome and the quality of resection with a control group with similar lesions.
The purpose of this study was to achieve a more radical resection of tumors in the area of the motor cortex via minimal craniotomy using a combination of neuronavigation and neurophysiological monitoring with direct electrical cortical stimulation and to compare retrospectively the clinical outcome and postoperative magnetic resonance imaging with a control group that was operated on in our service when the combination of these monitoring techniques was not available. A total of 42 patients with tumors in or near the central region underwent surgery with neuronavigation guidance and neurophysiological monitoring. ⋯ By stimulating the identified primary motor cortex and displaying the motor area in the operating microscope a permanent control of the motor function was possible during the whole operation. Using these techniques a more radical tumor resection - evaluated by postoperative MRI - was achieved in the study group (p = 0.04) and also a trend toward a better neurological outcome.