Neurosurg Focus
-
The functional importance of the superior temporal lobe at the level of Heschl's gyrus is well known. However, the organization and function of these cortical areas and the underlying fiber tracts connecting them remain unclear. The goal of this study was to analyze the area formed by the organization of the intersection of Heschl's gyrus-related fiber tracts, which the authors have termed the "Heschl's gyrus fiber intersection area" (HGFIA). ⋯ This investigation of the HGFIA, a region where 5 fiber tracts intersect in a relationship with the primary auditory area, provides new insights into the subcortical organization of Wernicke's area. This information is valuable when a temporal surgical approach is planned, in order to assess the surgical risk related to language disturbances.
-
The ability of diffusion tensor MRI to detect the preferential diffusion of water in cerebral white matter tracts enables neurosurgeons to noninvasively visualize the relationship of lesions to functional neural pathways. Although viewed as a research tool in its infancy, diffusion tractography has evolved into a neurosurgical tool with applications in glioma surgery that are enhanced by evolutions in crossing fiber visualization, edema correction, and automated tract identification. ⋯ The key methods of tractography in current practice and crucial white matter fiber bundles are summarized. After a review of the physical basis of DTI and post-DTI tractography, the authors discuss the methodologies with which to adapt DT image processing for surgical planning, as well as the potential of connectomic imaging to facilitate a network approach to oncofunctional optimization in glioma surgery.
-
Neurosurgery has been at the forefront of a paradigm shift from a localizationist perspective to a network-based approach to brain mapping. Over the last 2 decades, we have seen dramatic improvements in the way we can image the human brain and noninvasively estimate the location of critical functional networks. In certain patients with brain tumors and epilepsy, intraoperative electrical stimulation has revealed direct links between these networks and their function. ⋯ Resting-state functional MRI (rs-fMRI) is a noninvasive imaging modality that is able to measure spontaneous low-frequency blood oxygen level-dependent signal fluctuations at rest to infer neuronal activity. Rs-fMRI may be able to map cognitive and emotional networks for individual patients. In this review, the authors give an overview of the rs-fMRI technique and associated cognitive and emotional resting-state networks, discuss the potential applications of rs-fMRI, and propose future directions for the mapping of cognition and emotion in neurosurgical patients.
-
By looking at how the accuracy of preoperative brain mapping methods vary according to differences in the distance from the activation clusters used for the analysis, the present study aimed to elucidate how preoperative functional neuroimaging may be used in such a way that maximizes the mapping accuracy. ⋯ This study demonstrates that the accuracy of language and motor mapping for both fMRI and MEG is heavily dependent on the distance threshold used in the analysis. Furthermore, combining MEG and fMRI showed the potential for increased motor mapping accuracy compared to when using the modalities separately.Clinical trial registration no.: NCT01535430 (clinicaltrials.gov).