World Neurosurg
-
Learning curve, training, and cost impede widespread implementation of new technology. Neurosurgical robotic technology introduces challenges to visuospatial reasoning and requires the acquisition of new fine motor skills. Studies detailing operative workflow, learning curve, and patient outcomes are needed to describe the utility and cost-effectiveness of new robotic technology. ⋯ This study demonstrated institutional workflow evolution and learning curve for the Autoguide in pediatric sEEG, resulting in reduced operative times and increased accuracy over a small number of cases. The platform may seamlessly and quickly be incorporated into clinical practice, and the provided workflow can facilitate a smooth transition.
-
Extracranial-intracranial (EC-IC) bypass is an established therapeutic option for Moyamoya disease (MMD). However, little is known about the effects of racial and ethnic disparities on outcomes. This study assessed trends in EC-IC bypass outcomes among MMD patients stratified by race and ethnicity. ⋯ This study highlights racial and socioeconomic disparities in EC-IC bypass for patients with MMD. Despite these disparities, we did not find any significant difference in the quality of care. Addressing these disparities is essential for optimizing MMD outcomes.
-
Intraoperative ultrasound (IOUS) images can be distorted by various artifacts. During surgeries for insular low-grade gliomas (LGGs), we repeatedly observed a distinct hyperechoic artifact adjacent to medial tumor borders, localized in brain regions with normal appearance on magnetic resonance imaging (MRI) that has not been reported before. ⋯ Although the causes of this bright artifact are unclear, we can hypothesize that the reverberation in between different parallel layers of white and gray matter localized under the insula could play a role in its appearance. Importantly, as this hyperechoic area was depicted already before any tumor resection, it may lead to erroneous conclusion that the tumor spreads more medially. Potential resection in this region may cause significant neurologic sequelae.
-
Verifying the intervertebral stability of each intervertebral fusion procedure, including transforaminal, posterior, and lateral lumbar interbody fusion (TLIF, PLIF, and LLIF, respectively), and the ratio of stress on the rods and pedicle screws during initial fixation may help select a fixation procedure that reduces the risk of mechanical complications, including rod fracture and screw loosening. Thus, we aimed to assess whether these procedures could prevent mechanical complications. ⋯ Stress on the rods and pedicle screws in the LLIF model was the lowest compared with that induced by other intervertebral fusion procedures. Therefore, LLIF may reduce mechanical complications occurrence, including rod fracture and screw loosening.