World Neurosurg
-
With each significant development in the field of neurosurgery, our dependence on computers, small and large, has continuously increased. From something as mundane as bipolar cautery to sophisticated intraoperative navigation with real-time magnetic resonance imaging-assisted surgical guidance, both technologies, however simple or complex, require computational processing power to function. The next frontier for neurosurgery involves developing a greater understanding of the brain and furthering our capabilities as surgeons to directly affect brain circuitry and function. ⋯ The development of quantum computers and their potential to be thousands, if not millions, of times faster than current "classical" computers, will significantly affect the neurosciences, especially the field of neurorehabilitation and neuromodulation. Quantum computers may advance our understanding of the neural code and, in turn, better develop and program implantable neural devices. When quantum computers reach the point where we can actually implant such devices in patients, the possibilities of what can be done to interface and restore neural function will be limitless.
-
As the older segment of the population grows faster than any other age group, the number of elderly diagnosed with glioblastoma is expected to increase. The aim of this study was to explore survival and the treatment provided to elderly patients diagnosed with glioblastoma in a population-based setting. We further studied whether increased treatment aggressiveness may have contributed to a clinically important survival benefit in the elderly population. ⋯ Advancing age remains a very strong and independent negative prognostic factor in glioblastoma. Although there has been an increase in the aggressiveness of treatment provided to elderly with glioblastoma, the gain for the oldest age group seems at best very modest. The prognosis of the oldest age group remains very poor, despite multimodal treatment.