Thromb Haemostasis
-
The mechanism of formation of platelet-derived microvesicles remains controversial. The aim of the present work was to study the formation of microvesicles in view of a possible involvement of the GPIIb-IIIa complex, and of exposure of negatively charged phospholipids as procoagulant material on the platelet surface. This was studied in blood from three Glanzmann's thrombasthenia patients lacking GPIIb-IIIa and healthy blood donors. ⋯ Thus, different inducers of the shedding of microvesicles seem to act by different mechanisms. For all inducers there was a strong correlation between the exposure of procoagulant surface and formation of microvesicles, suggesting that the mechanism of microvesicle formation is linked to the exposure of aminophospholipids. The results also show that the GPIIb-IIIa complex is not required for formation of microvesicles after activation of the complement system, but seems to be of importance, but not absolutely required, after stimulation with SFLLRN.
-
The plasma clearance of hydroxyethyl starch (HES) depends on the initial molecular weight and the degree of substitution. So far, little attention has been paid to the clinical relevance of the C2/C6 substitution ratio of hydroxyethyl starch. 10 patients with cerebrovascular circulatory disturbance received hemodilution therapy for 10 days, consisting of 10% HES 200/0.5 (mean molecular weight 200 kD, degree of substitution 0.5) with a C2/C6 ratio of 13.4. A second group of 10 patients received a starch solution with identical initial molecular weight and degree of substitution but with a C2/C6 ratio of 5.7. ⋯ This accumulation of large molecules leads to a beneficial longer lasting volume effect. The disadvantages include an increase in plasma viscosity and coagulation disturbances, which cannot be explained with the respective dilution effect alone. For these reasons, the C2/C6 ratio is of clinical relevance and should be included in the product labeling in the future.