Journal of the neurological sciences
-
Review
Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
There is significant evidence that the pathogenesis of several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Friedreich's ataxia (FRDA), multiple sclerosis and amyotrophic lateral sclerosis, may involve the generation of reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) associated with mitochondrial dysfunction. The mitochondrial genome may play an essential role in the pathogenesis of these diseases, and evidence for mitochondria being a site of damage in neurodegenerative disorders is based in part on observed decreases in the respiratory chain complex activities in Parkinson's, Alzheimer's, and Huntington's disease. Such defects in respiratory complex activities, possibly associated with oxidant/antioxidant imbalance, are thought to underlie defects in energy metabolism and induce cellular degeneration. ⋯ Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing the heat shock response. This may open up new perspectives in medicine, as molecules inducing this defense mechanism appear to be possible candidates for novel cytoprotective strategies. In particular, manipulation of endogenous cellular defense mechanisms, such as the heat shock response, through nutritional antioxidants, pharmacological compounds or gene transduction, may represent an innovative approach to therapeutic intervention in diseases causing tissue damage, such as neurodegeneration.
-
There are two components to the treatment of multiple sclerosis (MS); the first is to prevent damage occurring, and the second is to repair the residual damage. While considerable progress has been made in the recent years with the former through the development of anti-inflammatory and immunomodulatory therapies, there are currently no effective repair therapies routinely used in MS patients. ⋯ In this article we argue that a clear understanding of the repair mechanisms following CNS demyelination is fundamental to filling this gap. We discuss (1) the cellular events involved in remyelination, (2) changes in transcription factor expression within oligodendrocyte precursor cells associated with their activation in response to demyelination, (3) the role of platelet derived growth factor in the OPC recruitment phase of remyelination, and (4) the significance of the inflammatory response associated with demyelination in creating a signalling environment that favours remyelination.