Journal of the neurological sciences
-
In 2000, the Joint Commission on Accreditation of Healthcare Organizations (JCAHO) introduced the mandate for the implementation of standards for both pain assessment and need for therapy in hospitalized patients. The need for the appropriate titration of sedation and analgesia is particularly poignant in an intensive care unit (ICU) setting where iatrogenic discomfort often complicates patient management. ⋯ Hence, maximal comfort without diminishing neurological responsiveness is desirable. Here, we review the frequently applied methods of evaluating levels of pain and agitation in critically ill patients as well as discuss the appropriate classes of pharmaceutical agents common to this population, with particular emphasis on the potential neurophysiological impact of such therapy.
-
Because a large number of patients will suffer cardiac arrest each year, physicians must place attention on improving care for patients in the post-resuscitative setting. Part of this effort requires setting realistic goals based on patients' potential for recovery. Recovery from cardiac arrest often depends on the extent of anoxic brain injury, and for this reason primary teams consult neurologists to offer insight into potential for awakening from post-arrest coma. ⋯ These factors most reliably predict poor outcome, but do so with high specificity. However, the role of the neurology consultant must change to include guidance on strategies of neuroprotection. Aggressive efforts directed towards neuroprotection may change predictions for outcomes after cardiac arrest in the future.
-
Hypothermia is a potent neuroprotectant and induced hypothermia holds great promise as a therapy for acute neuronal injury. Thermoregulatory responses, most notably shivering, present major obstacles to therapeutic temperature management. A review of thermoregulatory physiology and strategies aimed at controlling physiologic responses to hypothermia is presented.
-
Review
Monitoring brain tissue oxymetry: will it change management of critically ill neurologic patients?
Based on the assumption that brain ischemia and hypoxia are central causes of brain damage, the maintenance of an adequate tissue oxygenation is a primary objective in the field of neurocritical care. Thus, monitoring brain tissue oxymetry, allowing the possibility to discriminate between normal and critically impaired tissue oxygenation, is recognized as an essential part of the management of the neurological critically ill patient. The clinical usefulness of this neuromonitoring tool in the area of neurosciences (traumatic brain injury, aneurysm surgery, arteriovenous malformation resection, brain tumors) is discussed. ⋯ It can also be used as a "surrogate end point" to evaluate putative therapies, targeting therapy towards improved cerebral oxygenation. As brain tissue oxygenation correlates closely with outcome, several outcome categories have been differentiated, aiding in predicting prognosis after injury. The rationale for monitoring brain tissue oxygenation is to provide essential information about oxygen supply and utilization in this specific tissue bed, thus reducing secondary brain damage and improving neurological outcome.
-
Fever is common in a variety of neurological disorders. There is abundant experimental evidence suggesting that fever leads to, or exacerbates, neuronal injury in conditions such as cerebral ischemia and traumatic brain injury. ⋯ Recently, several new devices to control temperature have become available. These devices appear to be more effective than conventional means and might allow us to design studies that definitively answer the question: "Does controlling fever improve outcome?"