Journal of neurophysiology
-
Comparative Study
Crossmodal integration in the primate superior colliculus underlying the preparation and initiation of saccadic eye movements.
Saccades to combined audiovisual stimuli often have reduced saccadic reaction times (SRTs) compared with those to unimodal stimuli. Neurons in the intermediate/deep layers of the superior colliculus (dSC) are capable of integrating converging sensory inputs to influence the time to saccade initiation. To identify how neural processing in the dSC contributes to reducing SRTs to audiovisual stimuli, we recorded activity from dSC neurons while monkeys generated saccades to visual or audiovisual stimuli. ⋯ Instead, the reduction in SRT for high-intensity, aligned audiovisual stimuli was correlated with increased premotor activity (activity after visual burst but preceding saccade-aligned burst). These data provide a link between changes in neural activity related to stimulus modality with changes in behavior. They further demonstrate how crossmodal interactions are not limited to the initial sensory activity but can also influence premotor activity in the SC.
-
Editorial Historical Article
The physiology of the peripheral vestibular system: the birth of a field.