Journal of neurophysiology
-
Spatial information of nociceptive stimuli applied in the skin of healthy humans is integrated in the spinal cord to determine the appropriate withdrawal reflex response. Double-simultaneous stimulus applied in different skin sites are integrated, eliciting a larger reflex response. The temporal characteristics of the stimuli also modulate the reflex, e.g., by temporal summation. ⋯ NEW & NOTEWORTHY Tempo-spatial integration of electrical noxious stimuli was studied using the nociceptive withdrawal reflex and a perceived intensity. Tibialis anterior and biceps femoris muscles were differentially modulated by the temporal characteristics of the stimuli and stimulated sites. These findings suggest that spinal neurons are playing an important role in the tempo-spatial integration of nociceptive information, leading to a reflex response that is distributed across multiple spinal cord segments and governed by an efficient defensive withdrawal strategy.
-
Many individuals who undergo limb amputation experience persistent phantom limb pain (PLP), but the underlying mechanisms of PLP are unknown. The traditional hypothesis was that PLP resulted from maladaptive plasticity in sensorimotor cortex that degrades the neural representation of the missing limb. However, a recent study of individuals with upper limb amputations has shown that PLP is correlated with aberrant electromyographic (EMG) activity in residual muscles, posited to reflect a retargeting of efferent projections from a preserved representation of a missing limb. ⋯ These results show that phantom limb movement is associated with aberrant activity in a residual muscle after lower-limb amputation and provide evidence of a positive relationship between this activity and phantom limb pain. NEW & NOTEWORTHY This study is the first to assess residual muscle activity during movement of a phantom limb in individuals with lower limb amputations. We find that phantom foot movement is associated with aberrant recruitment of a residual thigh muscle and that this aberrant activity is related to phantom limb pain.
-
Traumatic musculoskeletal injury (MSI) may involve changes in corticomotor structure and function, but direct evidence is needed. To determine the corticomotor basis of MSI, we examined interactions among skeletomotor function, corticospinal excitability, corticomotor structure (cortical thickness and white matter microstructure), and intermittent theta burst stimulation (iTBS)-induced plasticity. Nine women with unilateral anterior cruciate ligament rupture (ACL) 3.2 ± 1.1 yr prior to the study and 11 matched controls (CON) completed an MRI session followed by an offline plasticity-probing protocol using a randomized, sham-controlled, double-blind, cross-over study design. iTBS was applied to the injured (ACL) or nondominant (CON) motor cortex leg representation (M1LEG) with plasticity assessed based on changes in skeletomotor function and corticospinal excitability compared with sham iTBS. ⋯ NEW & NOTEWORTHY Traumatic musculoskeletal injuries may involve adaptive changes in the brain that contribute to loss of function. Our combination of neuroimaging and theta burst transcranial magnetic stimulation (iTBS) revealed distinct patterns of iTBS-induced plasticity that normalized differences in muscle and brain function evident years after unilateral knee ligament rupture. Individual responses to iTBS corresponded to injury-specific differences in brain structure and physiological activity, depended on skeletomotor deficit severity, and suggested that corticomotor adaptations involve both hemispheres.
-
Permanent threshold elevation after noise exposure or aging is caused by loss of sensory cells; however, animal studies show that hair cell loss is often preceded by degeneration of the synapses between sensory cells and auditory nerve fibers. Silencing these neurons is likely to degrade auditory processing and may contribute to difficulties understanding speech in noisy backgrounds. Reduction of suprathreshold ABR amplitudes can be used to quantify synaptopathy in inbred mice. ⋯ NEW & NOTEWORTHY Recent studies suggest that millions of people may be at risk of permanent impairment from cochlear synaptopathy, the age-related and noise-induced degeneration of neural connections in the inner ear. This study examines electrophysiological responses to stimuli designed to improve detection of neural damage in subjects with normal hearing sensitivity. The resultant correlations with word recognition performance are consistent with a contribution of cochlear neural damage to deficits in hearing in noise abilities.
-
Covert spatial attention is thought to facilitate the maintenance of locations in working memory, and EEG α-band activity (8-12 Hz) is proposed to track the focus of covert attention. Recent work has shown that multivariate patterns of α-band activity track the polar angle of remembered locations relative to fixation. However, a defining feature of covert spatial attention is that it facilitates processing in a specific region of the visual field, and prior work has not determined whether patterns of α-band activity track the two-dimensional (2-D) coordinates of remembered stimuli within a visual hemifield or are instead maximally sensitive to the polar angle of remembered locations around fixation. ⋯ These results support the hypothesis that this α-band activity is involved in the spotlight of attention, and arises from mid- to lower-level visual areas involved in maintaining spatial locations in working memory. NEW & NOTEWORTHY A substantial body of work has shown that patterns of EEG α-band activity track the angular coordinates of attended and remembered stimuli around fixation, but whether these patterns track the two-dimensional coordinates of stimuli presented within a visual hemifield remains an open question. Here, we demonstrate that α-band activity tracks the two-dimensional coordinates of remembered stimuli within a hemifield, showing that α-band activity reflects a spotlight of attention focused on locations maintained in working memory.