Journal of neurophysiology
-
The recent discovery of cyclic GMP-AMP synthase (cGAS) as the mammalian cytosolic DNA sensor has profound therapeutic implications for infection, immunology, and cancer. Because neurovirology, neuroimmunology, neuro-oncology, and neurodegeneration implicate cytosolic DNA sensing, cGAS activation and induction of the downstream signaling protein stimulator of interferon genes (STING) has become increasingly recognized as a crucial determinant of neuropathophysiology. This Neuro Forum article reviews recent advances on the role of cGAS-STING signaling in neuroinflammation and neurological disease.
-
The pursuit of a physiological indicator of noxious stimulation is desirable as it has the potential to provide mechanistic information regarding acute pain and may ultimately improve pain management strategies. Currently, there are no specific neurophysiological markers of pain to evaluate treatments. Recent attempts to identify neural correlates of pain have focused on different neuroimaging modalities. The purpose of this review is to discuss common neuroimaging techniques and findings thus far.
-
The ability to differentially alter specific brain functions via deep brain stimulation (DBS) represents a monumental advance in clinical neuroscience, as well as within medicine as a whole. Despite the efficacy of DBS in the treatment of movement disorders, for which it is often the gold-standard therapy when medical management becomes inadequate, the mechanisms through which DBS in various brain targets produces therapeutic effects is still not well understood. ⋯ A field of study related to assessing the network effects of DBS is gradually emerging that promises to reveal aspects of the underlying pathophysiology of various brain disorders and their response to DBS that will be critical to advancing the field. This review summarizes the nascent literature related to network effects of DBS measured by cerebral blood flow and metabolic imaging, functional imaging, and electrophysiology (scalp and intracranial electroencephalography and magnetoencephalography) in order to establish a framework for future studies.
-
Review Historical Article
Theories of pain: from specificity to gate control.
Several theoretical frameworks have been proposed to explain the physiological basis of pain, although none yet completely accounts for all aspects of pain perception. Here, we provide a historical overview of the major contributions, ideas, and competing theories of pain from ancient civilizations to Melzack and Wall's Gate Control Theory of Pain.
-
To investigate intraspinal branching patterns of single corticospinal neurons (CSNs), we recorded extracellular spike activities from cell bodies of 408 CSNs in the motor cortex in anesthetized cats and mapped the distribution of effective stimulating sites for antidromic activation of their terminal branches in the spinal gray matter. To search for all spinal axon branches belonging to single CSNs in the "forelimb area" of the motor cortex, we microstimulated the gray matter from the dorsal to the ventral border at 100-micron intervals at an intensity of 150-250 microA and systematically mapped effective stimulating penetrations at 1-mm intervals rostrocaudally from C3 to the most caudal level of their axons. From the depth-threshold curves, the comparison of the antidromic latencies of spikes evoked from the gray matter and the lateral funiculus, and the calculated conduction times of the collaterals, we could ascertain that axon collaterals were stimulated in the gray matter rather than stem axons in the corticospinal tract due to current spread. ⋯ None of these CSNs had axon collaterals in the cervical cord. CSNs terminating at different segments of the cervical and the thoracic cord were distributed in a wide area of the motor cortex and were intermingled. To determine the detailed trajectory of single axon branches, microstimulation was made at a matrix of points of 100 or 200 micron at the maximum intensity of 30 microA, and their axonal trajectory was reconstructed on the basis of the location of low-threshold foci and the latency of antidromic spikes.(ABSTRACT TRUNCATED AT 400 WORDS)