Journal of neurophysiology
-
Injury or section of a peripheral nerve can promote chronic neuropathic pain. This is initiated by the appearance and persistence of ectopic spontaneous activity in primary afferent neurons that promotes a secondary, enduring increase in excitability of sensory circuits in the spinal dorsal horn ("central sensitization"). We have previously shown that 10-20 days of chronic constriction injury (CCI) of rat sciatic nerve produce a characteristic "electrophysiological signature" or pattern of changes in synaptic excitation of five different electrophysiologically defined neuronal phenotypes in the substantia gelatinosa of the dorsal horn. ⋯ Further analysis of spontaneous and miniature (tetrodotoxin-resistant) excitatory postsynaptic currents is consistent with the possibility that decreased excitation of tonic neurons reflects loss of presynaptic contacts. By contrast, increased excitation of "delay" neurons may reflect increased frequency of discharge of presynaptic action potentials. This would explain how synaptic excitation of tonic cells decreases despite the fact that axotomy increases spontaneous activity in primary afferent neurons.
-
The functional properties of cutaneous afferent fibers were investigated 1-15 mo after nerve lesions, which allowed regeneration into denervated skin. After crushing or transection and resuturing the rat sural nerve, ongoing activity and responses to cold, heat, and mechanical stimuli presented to the denervated skin or to the nerve distal to the lesion were examined in 273 A-fibers and 211 C-fibers. Reinnervation of skin by A-fibers was largely complete by 1-4 mo after crushing but incomplete after transection and resuturing. ⋯ The frequency of afferent C-fibers with ongoing activity that were not highly cold sensitive was 45%. We conclude that the functional characteristics of afferent A- and C-fibers are expressed by regenerating nerve endings, even when they do not reinnervate their target tissue. The reinnervation of skin by afferent C-fibers is extremely slow and may never recover to normal.