Journal of neurophysiology
-
This study reports the findings of two classes of corneal afferents excited by drying of the cornea (dry responses) in isoflurane-anesthetized rats: cold-sensitive (CS; 87%) and cold-insensitive (CI; 13%) neurons. Compared with CI neurons, CS neurons showed significantly higher firing rates over warmer corneal temperatures (~31-15°C) and greater responses to menthol, drying, and wetting of the cornea but lower responses when hyperosmolar solutions were applied to the ocular surface. We proposed that the dry responses of these corneal afferents derive from cooling and an increased osmolarity of the ocular surface, leading to the production of basal tears. ⋯ Furthermore, the responses produced by cold stimulation of the cornea accounted for only 28% of the dry responses. These results support the view that the stimulus for basal tearing (corneal dryness) derives partly from cooling of the cornea that activates TRPM8 channels but that non-TRPM8 channels also contribute significantly to the dry responses and to basal tearing. Finally, we hypothesized that activation of TRPM8 by cooling in CS corneal afferents not only gives rise to the sensation of ocular coolness but also to the "wetness" perception (Thunberg's illusion), whereas a precise role of the CI afferents in basal tearing and other ocular dryness-related functions such as eye blink and the "dryness" sensation remain to be elucidated.
-
The amygdala plays a central role in evaluating the significance of acoustic signals and coordinating the appropriate behavioral responses. To understand how amygdalar responses modulate auditory processing and drive emotional expression, we assessed how neurons respond to and encode information that is carried within complex acoustic stimuli. We characterized responses of single neurons in the lateral nucleus of the amygdala to social vocalizations and synthetic acoustic stimuli in awake big brown bats. ⋯ In most neurons, variation in response duration depended, in part, on persistent excitatory discharge that extended beyond stimulus duration. Information in persistent firing duration was significantly greater than in spike rate, and the majority of neurons displayed more information in persistent firing, which was more likely to be observed in response to aggressive vocalizations (64%) than appeasement vocalizations (25%), suggesting that persistent firing may relate to the behavioral context of vocalizations. These findings suggest that the amygdala uses a novel coding strategy for discriminating among vocalizations and underscore the importance of persistent firing in the general functioning of the amygdala.
-
Paired-pulse transcranial magnetic stimulation (ppTMS) is a safe and noninvasive tool for measuring cortical inhibition in humans, particularly in patients with disorders of cortical inhibition such as epilepsy. However, ppTMS protocols in rodent disease models, where mechanistic insight into the ppTMS physiology and into disease processes may be obtained, have been limited due to the requirement for anesthesia and needle electromyography. To eliminate the confounding factor of anesthesia and to approximate human ppTMS protocols in awake rats, we adapted the mechanomyogram (MMG) method to investigate the ppTMS inhibitory phenomenon in awake rats and then applied differential pharmacology to test the hypothesis that long-interval cortical inhibition is mediated by the GABA(A) receptor. ⋯ With pharmacological testing, time course observations showed that ppTMS-MMG inhibition was acutely reduced following PTZ (P < 0.05), acutely enhanced after PB (P < 0.01) injection, and then recovered to pretreatment baseline after 1 h. Our data support the application of the ppTMS-MMG technique for measuring the cortical excitability in awake rats and provide the evidence that GABA(A) receptor contributes to long-interval paired-pulse cortical inhibition. Thus ppTMS-MMG appears a well-tolerated biomarker for measuring GABA(A)-mediated cortical inhibition in rats.
-
The rostral ventromedial medulla (RVM) is part of descending circuitry that modulates nociceptive processing at the level of the spinal cord. RVM output can facilitate pain transmission under certain conditions such as inflammation, and thereby contribute to hyperalgesia. Evidence suggests that substance P and activation of neurokinin-1 (NK-1) receptors in the RVM are involved in descending facilitation of nociception. ⋯ After capsaicin injection, excitatory responses of ON cells and inhibitory responses of OFF cells evoked by mechanical and heat stimuli applied to the injected, but not contralateral, paw were increased. Injection of the NK-1 antagonist L-733,060 did not alter evoked responses of ON or OFF cells but attenuated the capsaicin-evoked enhanced responses of ON cells to mechanical and heat stimuli with less of an effect on the enhanced inhibitory responses of OFF cells. These data support the notion that descending facilitation from RVM contributes to hyperalgesia and that NK-1 receptors, presumably located on ON cells, play an important role in initiating descending facilitation of nociceptive transmission.
-
Evoked potentials recorded from the somatosensory cortex have been shown to be an electrophysiological marker of brain injury in global hypoxic ischemia (HI). The evoked responses in somatosensory neurons carry information pertaining to signal from the ascending pathway in both the subcortical and cortical areas. In this study, origins of the subcortical and cortical signals are explored by decomposing the evoked neuronal activities into short- and long-latency responses (SLR and LLR), respectively. ⋯ This suggests that cortical activity, which primarily underlies the LLR, may be more vulnerable to ischemic injury than SLR, which relates to subcortical activity. Hypothermia potentiated the SLR but suppressed the LLR by delaying its recovery after CA (hypothermia: 38.83 ± 5.86 min, normothermia: 23.33 ± 1.15 min; P < 0.05) and attenuating its amplitude, suggesting that hypothermia may selectively downregulate cortical activity as an approach to preserve the cerebral cortex. In summary, our study reveals the vulnerability of the somatosensory neural structures to global HI and the differential effects of hypothermia on these structures.