Life sciences
-
Comparative Study
Desflurane but not sevoflurane augments laryngeal C-fiber inputs to nucleus tractus solitarii neurons by activating transient receptor potential-A1.
Volatile anesthetics have distinct odors and some are irritating to the upper airway and may cause cough and laryngospasm, which may result, in part, from stimulation of C-fiber reflex. Local exposure of such anesthetics increases the sensitivity of capsaicin-sensitive laryngeal C-fiber endings compatible with airway irritability presumably by activation of transient receptor potential (TRP) ion channels, but the physiological relevance of this sensitization transmitted to the higher-order neurons in the central reflex pathway and output is unknown. ⋯ Thus, the sensitization of the laryngeal C-fiber endings by irritant volatile anesthetics is transmitted to the NTS via activation of the TRPA1 and is associated with a prolonged reflexively evoked expiratory apnea. The findings may help to explain local deleterious effects of irritant volatile general anesthetics on the airways during inhaled induction or bronchodilator therapy for status asthmatics.
-
Recently, we demonstrated that peripheral antinociception induced by δ opioid receptor is dependent of Ca(2+)-activated Cl(-) channels (CaCCs). Because opioid and cannabinoid receptors share some common mechanisms of action, our objective was to identify a possible relationship between CaCCs and the endocannabinoid system. ⋯ These results provide the first evidence for the involvement of CaCCs in the peripheral antinociception induced by activation of the CB1 cannabinoid receptor.