Life sciences
-
The present study was designed to investigate whether the antinociceptive effect of bone marrow-derived mesenchymal stem/stromal cells (MSC) during oxaliplatin (OXL)-induced sensory neuropathy is related to antioxidant properties. ⋯ MSC induce reversion of sensory neuropathy induced by OXL possibly by activation of anti-inflammatory and antioxidant pathways, leading to reestablishment of redox homeostasis in the spinal cord.
-
Review
Cardioprotection of pharmacological postconditioning on myocardial ischemia/reperfusion injury.
Acute myocardial infarction is associated with high rates of morbidity and mortality and can cause irreversible myocardial damage. Timely reperfusion is critical to limit infarct size and salvage the ischemic myocardium. ⋯ Previous studies have shown that various mechanisms are involved in the effects of PPC. In this review, we summarize the relative effects and potential underlying mechanisms of PPC to provide a foundation for future research attempting to develop novel treatments against myocardial I/R injury.
-
Sepsis occurs due to a damaging host response to infection and is the chief cause of death in most intensive care units. Mesenchymal stem cells (MSCs) exhibit immunomodulatory properties and can modulate key cells of the innate and adaptive immune systems through various effector mechanisms, such as exosomes. Exosomes and their microRNA (miRNA or miR) cargo including miR-21 can initiate profound phenotypic changes in the tumor microenvironment due to their intercellular communication transmitting the pleiotropic messages between different cell types, tissues, and body fluids. ⋯ More specifically, we demonstrated βMSCs-derived exosomes inhibited the effects of PDCD4, the target gene of miR-21, on macrophage polarization and sepsis. In conclusion, exosomal miR-21 emerged as a key mediator of IL-1β pretreatment induced immunomodulatory properties of MSCs. The study indicated a novel basis for therapeutic application of MSCs in sepsis.