Bmc Evol Biol
-
GATA transcription factors influence many developmental processes, including the specification of embryonic germ layers. The GATA gene family has significantly expanded in many animal lineages: whereas diverse cnidarians have only one GATA transcription factor, six GATA genes have been identified in many vertebrates, five in many insects, and eleven to thirteen in Caenorhabditis nematodes. All bilaterian animal genomes have at least one member each of two classes, GATA123 and GATA456. ⋯ From our analysis, we infer the evolutionary birth order and relationships among vertebrate GATA transcription factors, and define their expansion via multiple rounds of whole genome duplication events. As the genomes of four independent invertebrate deuterostome lineages contain single copy GATA123 and GATA456 genes, we infer that the 0R (pre-genome duplication) invertebrate deuterostome ancestor also had two GATA genes, one of each class. Synteny analyses identify duplications of paralogous chromosomal regions (paralogons), from single ancestral vertebrate GATA123 and GATA456 chromosomes to four paralogons after the first round of vertebrate genome duplication, to seven paralogons after the second round of vertebrate genome duplication, and to fourteen paralogons after the fish-specific 3R genome duplication. The evolutionary analysis of GATA gene origins and relationships may inform understanding vertebrate GATA factor redundancies and specializations.