Bmc Evol Biol
-
Recently we proposed an evolutionary explanation for a spinal pathology that afflicts many people, intervertebral disc herniation (Plomp et al. [2015] BMC Evolutionary Biology 15, 68). Using 2D data, we found that the bodies and pedicles of lower vertebrae of pathological humans were more similar in shape to those of chimpanzees than were those of healthy humans. Based on this, we hypothesized that some individuals are more prone to intervertebral disc herniation because their vertebrae exhibit ancestral traits and therefore are less well adapted for the stresses associated with bipedalism. Here, we report a study in which we tested this "Ancestral Shape Hypothesis" with 3D data from the last two thoracic and first lumbar vertebrae of pathological Homo sapiens, healthy H. sapiens, Pan troglodytes, and several extinct hominins. ⋯ The results of the present study add weight to the hypothesis that intervertebral disc herniation in H. sapiens is connected with vertebral shape. Specifically, they suggest that individuals whose vertebrae are towards the ancestral end of the range of shape variation within H. sapiens have a greater propensity to develop the condition than other individuals. More generally, the study shows that evolutionary thinking has the potential to shed new light on human skeletal pathologies.