Clin Pharmacokinet
-
Genetic variability in drug response occurs as a result of molecular alterations at the level of drug-metabolising enzymes, drug targets/receptors, and drug transport proteins. In this paper, we discuss the possibility that therapeutic drug monitoring (TDM) in the future will involve not the mere measurement and interpretation of drug concentrations but will include both traditional TDM and pharmacogenetics-oriented TDM. In contrast to traditional TDM, which cannot be performed until after a drug is administered to the patient. pharmacogenetics-oriented TDM can be conducted even before treatment begins. ⋯ However, prospective studies of phaymacogenetics-oriented TDM must be performed to determine its efficacy and cost effectiveness in optimising therapeutic effects while minimising toxicity. In the future, in addition to targeting a patient's drug concentrations within a therapeutic range, pharmacists are likely to be making dosage recommendations for individual drugs on the basis of the individual patient's genotype. As we enter the era of personalised drug therapy, we will be able to identify not only the best drug to be administered to a particular patient, but also the most effective and safest dosage from the outset of therapy.
-
Dexketoprofen trometamol is a water-soluble salt of the dextrorotatory enantiomer of the nonsteroidal anti-inflammatory drug (NSAID) ketoprofen. Racemic ketoprofen is used as an analgesic and an anti-inflammatory agent, and is one of the most potent in vitro inhibitors of prostaglandin synthesis. This effect is due to the (S)-(+)-enantiomer (dexketoprofen), while the (R)-(-)-enantiomer is devoid of such activity. ⋯ A plateau in the analgesic activity of dexketoprofen trometamol at the 25mg dose is suggested. The time to onset of pain relief appeared to be shorter in patients treated with dexketoprofen trometamol. The drug was well tolerated.