Clin Pharmacokinet
-
Controlled Clinical Trial
Population pharmacokinetics of meropenem in critically ill patients undergoing continuous renal replacement therapy.
Meropenem is a carbapenem antibacterial frequently prescribed for the treatment of severe infections in critically ill patients, including those receiving continuous renal replacement therapy (CRRT). The objective of this study was to develop a population pharmacokinetic model of meropenem in critically ill patients undergoing CRRT. ⋯ A population pharmacokinetic model of meropenem in intensive care patients undergoing CRRT was developed and validated. CL(CR) and the patient type (whether septic or polytraumatized) were identified as significant covariates. The population pharmacokinetic model developed in the present study has been employed to recommend continuous infusion protocols in patients treated with CRRT.
-
Drug-drug interactions are a recurring problem in immunocompromised patients treated with triazole antifungals. While the introduction of new antifungals has expanded opportunities for lowering drug toxicity, virtually all antifungal regimens carry the risk of pharmacokinetic and pharmacodynamic interaction. This review presents the published data on molecular determinants (enzymes, transporters, orphan nuclear receptors) of systemic triazole pharmacokinetics in humans, including itraconazole, fluconazole, voriconazole and posaconazole. ⋯ In addition, some are substrates and/or inhibitors of drug transporters such as multidrug resistance-1 gene product, P-glycoprotein, or breast cancer resistance protein. The interactions of triazole antifungals can be divided into the following categories: modifications of antifungal pharmacokinetics by other drugs, modifications of other drug pharmacokinetics by antifungals, and two-way interactions. These features are the basis of most interactions that occur during triazole therapy.
-
Clinical Trial
Use of target controlled infusion to derive age and gender covariates for propofol clearance.
Attempts to describe the variability of propofol pharmacokinetics in adults and to derive population covariates have been sparse and limited mainly to experiments based on bolus doses or infusions in healthy volunteers. This study aimed to identify age and gender covariates for propofol when given as an infusion in anaesthetized patients. ⋯ We achieved a relatively simple and practical covariate model in which the variability of pharmacokinetics within the study population could be ascribed principally to variability in clearance from the central compartment. Pharmacokinetic simulation predicted an improved performance of the TCI system when employing the derived covariates model, especially in elderly female patients.
-
To characterize levetiracetam pharmacokinetics, identify significant covariate relationships and identify doses in children that achieve blood concentrations similar to those observed in adults. ⋯ The most influential covariate of levetiracetam pharmacokinetics in children is bodyweight. A starting dose of levetiracetam 10 mg/kg twice daily ensures the same exposure in children as does 500 mg twice daily in adults.
-
The mechanistic framework of physiologically based pharmacokinetic (PBPK) models makes them uniquely suited to hypothesis testing and lineshape analysis, which help provide valuable insights into mechanisms that contribute to the observed concentration-time profiles. The aim of this article is to evaluate the utility of PBPK models for simulating oral lineshapes by optimizing clearance and distribution parameters through fitting observed intravenous pharmacokinetic profiles. ⋯ The validation of the generic PBPK model built in-house demonstrated that as long as the absorption profile of a compound is determined solely by solubility and paracellular or transcellular permeability, the PBPK simulations of oral profiles using optimized parameters from intravenous simulations provide reasonably good agreement with the observed profile with respect to both the lineshape fit and prediction of pharmacokinetic parameters. Therefore, any lineshape mismatch between PBPK simulated and observed oral profiles can be interpreted suitably to gain mechanistic insights into the pharmacokinetic processes that have resulted in the observed lineshape. A strategy has been proposed to identify involvement of carrier-mediated transport; clearance saturation; enterohepatic recirculation of the parent compound; extra-hepatic, extra-gut elimination; higher in vivo solubility than predicted in vitro; drug-induced gastric emptying delays; gut loss and regional variation in gut absorption.