Journal of cell science
-
Journal of cell science · Jan 2014
Pain modulators regulate the dynamics of PKA-RII phosphorylation in subgroups of sensory neurons.
Knowledge about the molecular structure of protein kinase A (PKA) isoforms is substantial. In contrast, the dynamics of PKA isoform activity in living primary cells has not been investigated in detail. Using a high content screening microscopy approach, we identified the RIIβ subunit of PKA-II to be predominantly expressed in a subgroup of sensory neurons. ⋯ Detailed analyses revealed basal pRII to be regulated by the phosphatase PP2A. Increase of pRII was followed by phosphorylation of CREB in a PKA-dependent manner. Thus, we propose RII phosphorylation to represent an isoform-specific readout for endogenous PKA-II activity in vivo, suggest RIIβ as a novel nociceptive subgroup marker, and extend the current model of PKA-II activation by introducing a PP2A-dependent basal state.
-
Journal of cell science · Nov 2013
Functional expression of the voltage-gated Na⁺-channel Nav1.7 is necessary for EGF-mediated invasion in human non-small cell lung cancer cells.
Various ion channels are expressed in human cancers where they are intimately involved in proliferation, angiogenesis, invasion and metastasis. Expression of functional voltage-gated Na(+) channels (Nav) is implicated in the metastatic potential of breast, prostate, lung and colon cancer cells. However, the cellular mechanisms that regulate Nav expression in cancer remain largely unknown. ⋯ Examination of Nav1.7 expression at mRNA, protein and functional levels further reveals that EGF/EGFR signalling via the ERK1/2 pathway controls transcriptional regulation of channel expression to promote cellular invasion. Immunohistochemistry of patient biopsies confirms the clinical relevance of Nav1.7 expression in NSCLC. Thus, Nav1.7 has significant potential as a new target for therapeutic intervention and/or as a diagnostic or prognostic marker in NSCLC.
-
Journal of cell science · Sep 2013
The ire-1 ER stress-response pathway is required for normal secretory-protein metabolism in C. elegans.
The unfolded protein response (UPR) allows cells to cope with endoplasmic reticulum (ER) stress by adjusting the capacity of the ER to the load of ER-associated tasks. The UPR is important for maintaining ER homeostasis under extreme ER stress. UPR genes are important under normal growth conditions as well, but what they are required for under these conditions is less clear. ⋯ Notably, by compromising ER-associated degradation (ERAD) and phagocytosis, loss of ire-1 hinders the clearance of misfolded proteins from the ER as well as the clearance of proteins that were secreted into the pseudocoleom. Whereas the basal activity of the UPR is beneficial under normal conditions, it accelerates the pathology caused by toxic Aβ protein in a C. elegans model of Alzheimer's disease. Taken together, our findings indicate that UPR genes are critical for maintaining secretory protein metabolism under normal growth conditions.
-
Journal of cell science · Sep 2013
MiR-19b/20a/92a regulates the self-renewal and proliferation of gastric cancer stem cells.
Human gastric cancers contain a population of gastric cancer stem cells (GCSCs) that can undergo self-renewal and multipotent differentiation. GCSCs can be enriched with EpCAM+/CD44+ gastric cancer cells. However, the underlying mechanisms controlling the balance of GCSC self-renewal and differentiation remain to be explored. ⋯ Furthermore, we found that miR-19b, miR-20a and miR-92a could also promote the proliferation of gastric cancer cells. miR-17-92 targeted the E2F1 and HIPK1 proteins, which suppressed Wnt-β-catenin signaling. A real-time PCR analysis of miR-19b, miR-20a and miR-92a expression in 97 gastric cancer specimens suggested that miR-92a could be used as an independent prognostic factor in gastric cancer. This study showed that several members of the miR-17-92 cluster, miR-19b, miR-20a and miR-92a, might play important roles in the development of gastric cancer stem cells and that miR-92a has the potential to be used as a predictive prognostic marker in gastric cancer.
-
Journal of cell science · Jul 2012
Phosphorylation of p35 and p39 by Cdk5 determines the subcellular location of the holokinase in a phosphorylation-site-specific manner.
Cdk5 is a member of the cyclin-dependent kinase (Cdk) family, which is activated by neuronal activators p35 or p39. Cdk5 regulates a variety of neuronal activities including migration, synaptic activity and neuronal death. p35 and p39 impart cytoplasmic membrane association of p35-Cdk5 and p39-Cdk5, respectively, through their myristoylation, but it is not clearly understood how the cellular localization is related to different functions. We investigated the role of Cdk5 activity in the subcellular localization of p35-Cdk5 and p39-Cdk5. ⋯ Nevertheless, small but distinct amounts of p35 and p39 were detected in the nucleus. In particular, nuclear p35 and p39 were increased when the Cdk5 activity was inhibited. p39 had a greater propensity to accumulate in the nucleus than p35, and phosphorylation at Thr84, specific to p39, regulated the potential nuclear localization activity of the Lys cluster in p39. These results suggest that the subcellular localization of the Cdk5-activator complexes is determined by its kinase activity, and also implicate a role for p39-Cdk5 in the nucleus.