Korean J Physiol Pha
-
Korean J Physiol Pha · Dec 2009
Nitric oxide modulation of GABAergic synaptic transmission in mechanically isolated rat auditory cortical neurons.
The auditory cortex (A1) encodes the acquired significance of sound for the perception and interpretation of sound. Nitric oxide (NO) is a gas molecule with free radical properties that functions as a transmitter molecule and can alter neural activity without direct synaptic connections. We used whole-cell recordings under voltage clamp to investigate the effect of NO on spontaneous GABAergic synaptic transmission in mechanically isolated rat auditory cortical neurons preserving functional presynaptic nerve terminals. ⋯ Blockade of presynaptic K(+) channels by 4-aminopyridine, a K(+) channel blocker, increased the frequencies of GABAergic sIPSCs, but did not affect the inhibitory effects of SNAP. However, blocking of presynaptic Ca(2+) channels by Cd(2+), a general voltage-dependent Ca(2+) channel blocker, decreased the frequencies of GABAergic sIPSCs, and blocked SNAP-induced reduction of sIPSC frequency. These findings suggest that NO inhibits spontaneous GABA release by activation of cGMP-dependent signaling and inhibition of presynaptic Ca(2+) channels in the presynaptic nerve terminals of A1 neurons.