Pers Med
-
There is growing experience translating genomic data into clinical practice, as seen with the Implementing GeNomics In pracTicE (IGNITE) network. A primary example is the influence of CYP2D6 genotype on the beneficial and adverse effects of some opioids. ⋯ Limited evidence also supports the use of genetic data to guide other medications in chronic pain therapy, including tricyclic antidepressants and celecoxib. Pragmatic clinical trial data are needed in this area to better understand the impact of diverse populations, therapeutic interventions and clinical care environments on genotype-guided drug therapy for chronic pain.
-
Ten years ago, the proposition that healthcare is evolving from reactive disease care to care that is predictive, preventive, personalized and participatory was regarded as highly speculative. Today, the core elements of that vision are widely accepted and have been articulated in a series of recent reports by the US Institute of Medicine. ⋯ It will also provide the basis for concrete action by consumers to improve their health as they observe the impact of lifestyle decisions. Working together in digitally powered familial and affinity networks, consumers will be able to reduce the incidence of the complex chronic diseases that currently account for 75% of disease-care costs in the USA.
-
Genomic medicine is rapidly evolving. Next-generation sequencing is changing the diagnostic paradigm by allowing genetic testing to be carried out more quickly, less expensively and with much higher resolution; pushing the envelope on existing moral norms and legal regulations. Early experience with implementation of next-generation sequencing to diagnose rare genetic conditions in symptomatic children suggests ways that genomic medicine might come to be used and some of the ethical issues that arise, impacting test design, patient selection, consent, sequencing analysis and communication of results. The ethical issues that arise from use of new technologies cannot be satisfactorily analyzed until they are understood and they cannot be understood until the technologies are deployed in the real world.
-
A central goal of industrialized nations is to provide personalized, preemptive and predictive medicine, while maintaining healthcare costs at a minimum. To do so, we must confront and gain an understanding of inflammation, a complex, nonlinear process central to many diseases that affect both industrialized and developing nations. ⋯ This framework has now allowed us to suggest how to modulate acute inflammation in a rational and individually optimized fashion using engineering principles applied to a biohybrid device. We suggest that we are on the cusp of fulfilling the promise of in silico modeling for personalized medicine for inflammatory disease.
-
Recent developments in human genetic variation research have fueled predictions of an imminent era of personalized medicine. Defined as a shift toward greater integrated and heuristic innovation in healthcare, personalized medicine seeks to create differentiated strategies for the prevention of disease defined at the molecular level [1]. Recent developments in gene sequencing technologies have focused efforts toward improving efficacy and efficiency in the drug development process. ⋯ Critical to the success of pharmacogenomics and personalized drug therapies are the creation of large databases containing human genotypic and phenotypic information, the adoption of pharmacogenomic testing as a standard of medical care, and greater regulatory guidance on balancing commercial and public health priorities. In anticipation of these healthcare trajectories, serious engagement with the ethical and social implications of pharmacogenomics is needed. This article reviews several of these issues and highlights concerns that must be addressed in anticipation of personalized drug development.