The Journal of surgical research
-
Tumor necrosis factor (TNF)-alpha is a critical effector of lipopolysaccharide (LPS)-induced acute lung injury, and its effects are mediated by two structurally related receptors, RI and RII. Cellular adhesion molecules and C-X-C chemokines (Keratinocyte chemoattractant (KC) and macrophage inflammatory protein [MIP]-2) regulate tissue neutrophil polymorphonuclear neutrophil (PMN) accumulation in a multitude of inflammatory states. We hypothesized that TNFRI signaling dictates PMN accumulation in the lung via regulation of chemokine molecule production. Therefore, the purposes of this study were to (1) delineate LPS-induced lung TNF-alpha production and (2) characterize the contribution of both TNF receptors to lung chemokine production and neutrophil influx following systemic LPS. ⋯ Acute lung injury following systemic LPS administration is characterized by increased lung (1) TNF-alpha production, (2) C-X-C chemokine production, and (3) neutrophil accumulation. The maximal effect of LPS-induced lung neutrophil accumulation appears to be dependent upon the TNFRI receptor but not the TNFRII receptor. .