The Journal of surgical research
-
Opioid peptides, which can induce mammalian hibernation, may provide protection against subcellular and molecular changes during hypothermic myocardial ischemia. This study examined the differential effects of the three known myocyte opioid receptors, Mu (micro), Delta (delta), and Kappa (kappa), in augmenting myocardial ischemic tolerance. ⋯ This study demonstrates that the micro-receptor does not appear to confer a beneficial effect. However, selective delta- and kappa-agonists provide significant myocardial protection. Moreover, hearts pretreated with an opioid antagonist showed a marked decrement in both functional and metabolic integrity. These results taken together would imply a positive and negative constitutive role of delta- and kappa-opioids in the regulation of myocardial ischemic tolerance. This utilization of opioid receptor stimulation may have profound clinical applications.
-
Cardioprotective strategies are needed to prevent perioperative myocardial dysfunction in high-risk patients undergoing cardiac surgery. Despite accumulating evidence that statins exert lipid-independent cardioprotective effects, these have been ascribed primarily to improvements in endothelial function and neutrophil-endothelial interaction. The direct effects of statins on cardiomyocytes (independent of endothelial cells) remain unknown. ⋯ This effect was mediated via an increase in NO release, decrease in myocyte ET-1 production/action, and an increase in protein kinase Akt activation. We demonstrate, for the first time, novel protective effects of pravastatin in human ventricular cardiomyocytes independent of endothelial cells or other cell types. Statin therapy may restore ischemic hearts to full functional integrity during cardioplegic arrest through a direct effect on cardiomyocyte survival.