Journal of theoretical biology
-
The process of fracture healing involves the action and interaction of many cells, regulated by biochemical and mechanical signals. Vital to a successful healing process is the restoration of a good vascular network. In this paper, a continuous mathematical model is presented that describes the different fracture healing stages and their response to biochemical stimuli only (a bioregulatory model); mechanoregulatory effects are excluded here. ⋯ Numerical simulations of compromised healing situations showed that the establishment of a vascular network in response to angiogenic growth factors is a key factor in the healing process. Furthermore, a correct description of cell migration is also shown to be essential to the prediction of realistic spatiotemporal tissue distribution patterns in the fracture callus. The mathematical framework presented in this paper can be an important tool in furthering the understanding of the mechanisms causing compromised healing and can be applied in the design of future fracture healing experiments.