Journal of theoretical biology
-
In this work, we are proposing an extension of a recent hemodynamic model (Fantini, 2014a), which was developed within the framework of a novel approach to the study of tissue hemodynamics, named coherent hemodynamics spectroscopy (CHS). The previous hemodynamic model, from a signal processing viewpoint, treats the tissue microvasculature as a linear time-invariant system, and considers changes of blood volume, capillary blood flow velocity and the rate of oxygen diffusion as inputs, and the changes of oxy-, deoxy-, and total hemoglobin concentrations (measured in near infrared spectroscopy) as outputs. The model has been used also as a forward solver in an inversion procedure to retrieve quantitative parameters that assess physiological and biological processes such as microcirculation, cerebral autoregulation, tissue metabolic rate of oxygen, and oxygen extraction fraction. ⋯ We have found that for capillary blood flow velocity oscillations with amplitudes up to 10% of the baseline value (which reflect typical scenarios in CHS), the discrepancies between CHS spectra obtained with the linear and nonlinear models are negligible. For larger oscillations (~50%) the linear and nonlinear models yield CHS spectra with differences within typical experimental errors, but further investigation is needed to assess the effect of these differences. Flow oscillations larger than 10-20% are not typically induced in CHS; therefore, the results presented in this work indicate that a linear hemodynamic model, combined with a method to elicit controlled hemodynamic oscillations (as done for CHS), is appropriate for the quantitative assessment of cerebral microcirculation.
-
In human walking, toes play an important role in supporting the body and controlling the forward motion. These functions are achieved by muscles and tendons around toe joints. To further understand the importance of toe and how toe muscle functions affect the locomotion, we employ a simple bipedal walking model with compliant joints. ⋯ By generating plantar flexion moment after heel-off, the toes contribute to stabilize the body and control the forward motion. In addition, multi-joint foot structure could improve the energy efficiency by reducing the energy consumption of ankle joints. A proper toe actuation pattern could result in a proper toe dorsiflexion and reduce the maximal ankle plantar flexion, leading to a smoother and more efficient locomotion.