The Journal of pharmacology and experimental therapeutics
-
Evidence from both clinical studies and animal models suggests that the local anesthetic, lidocaine, is neurotoxic. However, the mechanism of lidocaine-induced toxicity is unknown. To test the hypothesis that toxicity results from a direct action of lidocaine on sensory neurons we performed in vitro histological, electrophysiological and fluorometrical experiments on isolated dorsal root ganglion (DRG) neurons from the adult rat. ⋯ This depolarization occurred even though voltage-gated sodium currents and action potentials were blocked effectively at much lower concentrations. (EC50 values for lidocaine-induced block of tetrodotoxin-sensitive and -resistant voltage-gated sodium currents were 41 and 101 microM, respectively.) At concentrations similar to those that induced neurotoxicity and depolarization, lidocaine also induced an increase in the concentration of intracellular Ca++ ions ([Ca++]i; EC50 = 21 mM) via Ca++ influx through the plasma membrane as well as release of Ca++ from intracellular stores. Finally, lidocaine-induced neurotoxicity was attenuated significantly when lidocaine was applied in the presence of nominally Ca(++)-free bath solution to DRG neurons preloaded with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Our results indicate: 1) that lidocaine is neurotoxic to sensory neurons; 2) that toxicity results from a direct action on sensory neurons; and 3) that a lidocaine-induced increase in intracellular Ca++ is a mechanism of lidocaine-induced neuronal toxicity.
-
J. Pharmacol. Exp. Ther. · May 1998
ABT-594 [(R)-5-(2-azetidinylmethoxy)-2-chloropyridine]: a novel, orally effective antinociceptive agent acting via neuronal nicotinic acetylcholine receptors: II. In vivo characterization.
The antinociceptive effects of ABT-594, a novel nicotinic acetylcholine receptor (nAChR) ligand, were examined in rats in models of acute thermal (hot box) and persistent chemical (formalin test) pain. Also, the effects of ABT-594 treatment on motor function and electroencephalogram (EEG) were determined. In the hot box and formalin test (i.e., phase 1 and 2), acute treatment with ABT-594 (0.03, 0.1 and 0.3 mumol/kg i.p.) produced significant dose-dependent antinociceptive effects. ⋯ In conclusion, these data demonstrate that ABT-594 is a potent antinociceptive agent with full efficacy in models of acute and persistent pain and that these effects are mediated predominately by an action at central neuronal nAChRs. In addition, antinociceptive effects were maintained after repeated dosing, whereas effects of ABT-594 on motor and temperature measures were attenuated in animals treated repeatedly with ABT-594. Thus, compounds acting at nAChRs may represent a novel approach for the treatment of a variety of pain states.
-
J. Pharmacol. Exp. Ther. · May 1998
Glycine site antagonists and partial agonists inhibit N-methyl-D-aspartate receptor-mediated [3H]arachidonic acid release in cerebellar granule cells.
Activation of N-methyl-D-aspartate (NMDA) receptors is known to produce arachidonic acid release, which has been implicated in excitotoxicity. Antagonists and partial agonists at the glycine site of the NMDA receptor, despite exhibiting functional differences in electrophysiological studies, inhibit glutamate-induced neurotoxicity and ischemia-induced neurodegeneration. The objective of this study was to investigate the effects of both glycine site antagonists and partial agonists on NMDA receptor-mediated [3H]arachidonic acid (AA) release evoked by glutamate, NMDA or a competitive inhibitor of the glutamate/aspartate uptake carrier. ⋯ Furthermore, L-trans-pyrrolidine-2,4-dicarboxylate (PDC), a competitive inhibitor of the glutamate transporter, also released [3H]AA (Emax and EC50 of 127 +/- 4% and 30 +/- 1 microM, respectively). ACPC, 7-CKYN and (+/-)-2-amino-7-phosphonoheptanoic acid (AP-7), a competitive NMDA receptor antagonist, inhibited [3H]AA release evoked by PDC. These results demonstrate that both glycine site antagonists and partial agonists can inhibit NMDA receptor-mediated [3H]AA release in cerebellar granule cells, an action consistent with the neuroprotective effects of these compounds.