The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Nov 1999
ATP-sensitive potassium channel blocker HMR 1883 reduces mortality and ischemia-associated electrocardiographic changes in pigs with coronary occlusion.
ATP-sensitive potassium (K(ATP)) channels are activated during myocardial ischemia. The ensuing potassium efflux leads to a shortening of the action potential duration and depolarization of the membrane by accumulation of extracellular potassium favoring the development of reentrant arrhythmias, including ventricular fibrillation. The sulfonylthiourea HMR 1883 was designed as a cardioselective blocker of myocardial K(ATP) channels for the prevention of arrhythmic sudden death in patients with ischemic heart disease. ⋯ In control animals, left anterior descending coronary artery occlusion lead to a prompt and significant depression of the S-T segment (-0.35 mV) and a prolongation of the Q-J time (+46 ms), the former reflecting heterogeneity in the plateau phase of the action potentials and the latter reflecting irregular impulse propagation and delayed ventricular activation. Both ischemic ECG changes were significantly attenuated by HMR 1883 (S-T segment, -0.14 mV; Q-J time, +15 ms), indicating the importance of K(ATP) channels in the genesis of these changes. In conclusion, the K(ATP) channel blocker HMR 1883, which had no effect on hemodynamics and ECG under baseline conditions, reduced the extent of ischemic ECG changes and sudden death due to ventricular fibrillation during coronary occlusion.