The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Sep 2000
Interaction of p-fluorofentanyl on cloned human opioid receptors and exploration of the role of Trp-318 and His-319 in mu-opioid receptor selectivity.
In this study, we investigated the interactions of p-fluorofentanyl, an opioid designer drug, fentanyl, sufentanyl, and morphine on cloned human mu-, kappa-, and delta-opioid receptors coexpressed with heteromultimeric G protein-coupled inwardly rectifying K(+) channels (GIRK1/GIRK2) and a regulator of G protein signaling (RGS4) in Xenopus oocytes. We demonstrate that p-fluorofentanyl more potently activates GIRK1/GIRK2 channels through opioid receptors than fentanyl and that the p-fluoro substitution also changes the potency profile from mu > kappa > delta (fentanyl) to mu > delta > or = kappa (p-fluorofentanyl). A comparison of ligand efficacy revealed that morphine, fentanyl, and its analogs less efficiently activate GIRK1/GIRK2 channels through human mu-opioid receptor than [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin. ⋯ Changes in EC(50) values for the W318L and W318Y/H319Y mu-opioid receptors show a partial contribution of these residues to the decreased GIRK1/GIRK2 channel activation by fentanyl analogs through kappa- and delta-opioid receptors. The most pronounced effect was observed for p-fluorofentanyl, suggesting that an interaction between the 4-fluorophenylpropanamide moiety of the drug and residues Trp-318 and His-319 is important for the resulting enhanced GIRK1/GIRK2 channel activation through the mu-opioid receptor. Finally, we demonstrate that mutation of W318L confers delta-like potency for morphine on the mutant mu-opioid receptor.
-
J. Pharmacol. Exp. Ther. · Sep 2000
Differential mechanisms mediating descending pain controls for antinociception induced by supraspinally administered endomorphin-1 and endomorphin-2 in the mouse.
We have previously demonstrated that both endomorphin-1 and endomorphin-2 produce their antinociception by the stimulation of mu-opioid receptors. However, the antinociception induced by endomorphin-2 contains an additional component, which is mediated by the release of dynorphin A (1-17) acting on kappa-opioid receptors. These studies were done to determine whether the antinociception induced by endomorphin-1 and endomorphin-2 given supraspinally was mediated by the activation of different descending pain control pathways in the mouse. ⋯ Intrathecal pretreatment with antiserum against Leu-enkephalin or beta-endorphin did not inhibit i.c.v.-administered endomorphin-1- or endomorphin-2-induced antinociception. The results indicate that, like other opioid micro-receptor agonists, morphine, and [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin, endomorphin-1 and endomorphin-2 given i.c.v. produce antinociception by activating spinipetal noradrenergic and serotonergic pathways for producing antinociception. However, the antinociception induced by endomorphin-2 given i.c.v. also contains other components, which are mediated by the release of Met-enkephalin and dynorphin A (1-17) acting on opioid delta(2)- and kappa-receptors, respectively, in the spinal cord.