The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Feb 2004
Neuroactive steroid interactions with voltage-dependent anion channels: lack of relationship to GABA(A) receptor modulation and anesthesia.
Neuroactive steroids modulate the function of gamma-aminobutyric acid type A (GABA(A)) receptors in brain; this is the presumed basis of their action as anesthetics. In a previous study using the neuroactive steroid analog, (3alpha,5beta)-6-azi-3-hydroxypregnan-20-one (6-AziP), as a photoaffinity-labeling reagent, we showed that voltage-dependent anion channel-1 (VDAC-1) was the predominant protein labeled in brain. Antisera to VDAC-1 were shown to coimmunoprecipitate GABA(A) receptors, suggesting a functional relationship between steroid binding to VDAC-1 and modulation of GABA(A) receptor function. ⋯ Electrophysiological studies also showed that neuroactive steroids modulate GABA(A) receptor function normally in VDAC-2-deficient fibroblasts transfected with alpha(1)beta(2)gamma(2) GABA(A) receptor subunits. Finally, the neuroactive steroid pregnanolone [(3alpha,5beta)-3-hydroxypregnan-20-one] produced anesthesia (loss of righting reflex) in VDAC-1- and VDAC-3-deficient mice, and there was no difference in the recovery time between the VDAC-deficient mice and wild-type controls. These data indicate that neuroactive steroid binding to VDAC-1, -2, or -3 is unlikely to mediate GABA(A) receptor modulation or anesthesia.
-
J. Pharmacol. Exp. Ther. · Feb 2004
Selective activation of cannabinoid CB2 receptors suppresses hyperalgesia evoked by intradermal capsaicin.
The present studies were conducted to test the hypothesis that activation of peripheral cannabinoid CB(2) receptors would suppress hyperalgesia evoked by intradermal administration of capsaicin, the pungent ingredient in hot chili peppers. The CB(2)-selective cannabinoid agonist (2-iodo-5-nitro-phenyl)-[1-(1-methyl-piperidin-2-ylmethyl)-1H-indol-3-yl]-methanone (AM1241) (33, 330 microg/kg i.p.) suppressed the development of capsaicin-evoked thermal and mechanical hyperalgesia and allodynia. AM1241 also produced a dose-dependent suppression of capsaicin-evoked nocifensive behavior. ⋯ AM1241 (33 microg/kg i.pl.) suppressed capsaicin-evoked thermal and mechanical hyperalgesia and allodynia after local administration to the capsaicin-treated (ipsilateral) paw but was inactive after administration to the capsaicin-untreated (contralateral) paw. Our data indicate that AM1241 suppresses capsaicin-evoked hyperalgesia and allodynia through a local site of action. These data provide evidence that actions at cannabinoid CB(2) receptors are sufficient to normalize nociceptive thresholds and produce antinociception in persistent pain states.