The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Apr 2004
Suppression of acute herpetic pain-related responses by the kappa-opioid receptor agonist (-)-17-cyclopropylmethyl-3,14beta-dihydroxy-4,5alpha-epoxy-beta-[n-methyl-3-trans-3-(3-furyl) acrylamido] morphinan hydrochloride (TRK-820) in mice.
(-)-17-Cyclopropylmethyl-3,14beta-dihydroxy-4,5alpha-epoxy-6beta-[N-methyl-3-trans-3-(3-furyl) acrylamido] morphinan hydrochloride (TRK-820) is a kappa-opioid receptor agonist that has pharmacological characteristics different from typical kappa-opioid receptor agonists. This study was conducted to determine the antiallodynic and antihyperalgesic effects of TRK-820 in a mouse model of acute herpetic pain and to compare them with those of the kappa-opioid receptor agonist enadoline and the mu-opioid receptor agonist morphine. Percutaneous inoculation with herpes simplex virus type-1 induced tactile allodynia and mechanical hyperalgesia in the hind paw on the inoculated side. ⋯ Intrathecal and intracerebroventricular, but not intraplantar, injections of TRK-820 (10-100 ng/site) suppressed the allodynia and hyperalgesia. These results suggest that TRK-820 inhibits acute herpetic pain through kappa-opioid receptors in the spinal and supraspinal levels. TRK-820 may have clinical efficacy in acute herpetic pain with enough safety margins.
-
J. Pharmacol. Exp. Ther. · Apr 2004
Novel 2',6'-dimethyl-L-tyrosine-containing pyrazinone opioid mimetic mu-agonists with potent antinociceptive activity in mice.
Novel bioactive opioid mimetic agonists containing 2',6'-dimethyl-l-tyrosine (Dmt) and a pyrazinone ring interact with mu- and delta-opioid receptors. Compound 1 [3-(4' -Dmt-aminobutyl)-6-(3'-Dmt-aminopropyl)-5-methyl-2(1H)pyrazinone] exhibited high mu-opioid receptor affinity and selectivity (K(i)mu = 0.021 nM and K(i)delta/K(i)mu = 1,519, respectively), and agonist activity on guinea pig ileum (IC(50) = 1.7 nM) with weaker delta-bioactivity on mouse vas deferens (IC(50) = 25.8 nM). Other compounds (2-4) had mu-opioid receptor affinities and selectivities 2- to 5-fold and 4- to 7-fold less than 1, respectively. ⋯ Our data indicated that 1 acted through mu- and delta-opioid receptors to produce spinal antinociception, although primarily through the mu(2)-receptor subtype; however, the mu(1)-receptor subtype dominates supraspinally. Subcutaneous and oral administration indicated that 1 crossed gastrointestinal and blood-brain barriers to produce central nervous system-mediated antinociception. Furthermore, daily s.c. dosing of mice with 1 for 1 week developed tolerance in a similar manner to that of morphine in TF and HP tests, implicating that 1 also acts through a similar mechanism analogous to morphine at mu-opioid receptors.
-
J. Pharmacol. Exp. Ther. · Apr 2004
Role of alpha-adrenergic receptors in the effect of the beta-adrenergic receptor ligands, CGP 12177, bupranolol, and SR 59230A, on the contraction of rat intrapulmonary artery.
This study investigates the effect of the aryloxypropanolamines 4-[3-[(1,1-dimethylethyl)amino]-2-hydroxypropoxy]-1,3-dihydro-2H-benzimidazol-2-one (CGP 12177), bupranolol, and 3-(2-ethylphenoxy)-1[(1S)-1,2,3,4-tetrahydronaphth-1-ylamino]-(2S)-2-propanol oxalate (SR 59230A) [commonly used as beta(3)- and/or atypical beta-adrenergic receptors (beta-AR) ligands] on the contractile function of rat intralobar pulmonary artery. Affinities of beta-AR ligands for alpha(1)-adrenergic receptors (alpha(1)-AR) were also evaluated using [(3)H]prazosin binding competition experiments performed in rat cortical membranes. In intralobar pulmonary artery, CGP 12177 did not modify the basal tone, but antagonized the contraction induced by the alpha(1)-AR agonist phenylephrine (PHE). ⋯ These data suggest that CGP 12177 exhibits partial agonist properties for alpha(1)-AR in rat pulmonary artery. They also show that bupranolol and SR 59230A exert an alpha(1)-AR antagonist effect. As a consequence, these aryloxypropanolamine compounds should be used with caution when investigating the role of beta(3)- and atypical beta-AR in the regulation of vascular tone.
-
J. Pharmacol. Exp. Ther. · Apr 2004
Differential effects of delta9-tetrahydrocannabinol and methanandamide in CB1 knockout and wild-type mice.
Mice devoid of CB1 cannabinoid receptors (CB1-/- mice) provide a unique opportunity to further investigate the role of CB1 receptors in exocannabinoid and endocannabinoid effects. CB1-/- mice (N = 18) and their wild-type littermates (CB1+/+ mice; N = 12) were placed in standard mouse operant chambers and trained to lever press under a fixed ratio 10 schedule of reinforcement. When stable lever press responding under the fixed ratio 10 schedule had been established, cannabinoids and noncannabinoids were administered to both groups. ⋯ Because methanandamide binds poorly to CB2 receptors, these results suggest possible non-CB1, non-CB2 mechanisms of action for methanandamide-induced behavioral disruption of lever press responding. Ethanol and morphine elicited greater response decreases in CB1-/- mice than in CB1+/+ mice, suggesting a possible role of CB1 receptors in the rate disruptive effects of these drugs. In contrast, diazepam did not produce between group differences, suggesting that CB1 receptors are not involved in diazepam-induced disruption of lever press responding.