The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Nov 2005
Impairment of hyperpolarization-activated, cyclic nucleotide-gated channel function by the intravenous general anesthetic propofol.
Propofol (2,6-diisopropylphenol) is a widely used intravenous general anesthetic, which has been reported to produce bradycardia in patients at concentrations associated with profound sedation and loss of consciousness. Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels conduct a monovalent cationic current I(h) (also known as I(q) or I(f)) that contributes to autorhythmicity in both the brain and heart. Here we studied the effects of propofol on recombinant HCN1, HCN2, and HCN4 channels and found that the drug inhibits and slows activation of all three channels at clinically relevant concentrations. ⋯ HCN1 channels also showed a marked propofol-induced hyperpolarizing shift in the voltage dependence of activation (EC(50) of 6.7 +/- 1.0 microM) and accelerated deactivation (EC(50) of 4.5 +/- 0.9 microM). Furthermore, propofol reduced heart rate in an isolated guinea pig heart preparation over the same range of concentrations. These data suggest that propofol modulation of HCN channel gating is an important molecular mechanism that can contribute to the depression of central nervous system function and also lead to bradyarrhythmias in patients receiving propofol during surgical anesthesia.
-
J. Pharmacol. Exp. Ther. · Nov 2005
Characterization of a novel bivalent morphinan possessing kappa agonist and micro agonist/antagonist properties.
Previous research has shown that compounds with mixed kappa and mu activity may have utility for the treatment of cocaine abuse and dependence. The present study characterizes the pharmacological profile of a bivalent morphinan that was shown to be a kappa opioid receptor agonist and a mu opioid receptor agonist/antagonist. MCL-145 [bis(N-cyclobutylmethylmorphinan) fumarate] is related to the morphinan cyclorphan and its N-cyclobutylmethyl derivative MCL-101 [3-hydroxy-N-cyclobutylmethyl morphinan S-(+)-mandelate]. ⋯ In vivo MCL-145 produced a full dose-response curve in the 55 degrees C warm water tail-flick test and was equipotent to morphine. The agonist properties of MCL-145 were antagonized by the mu-selective antagonist beta-funaltrexamine and the kappa-selective antagonist nor-binaltorphimine. MCL-145 also acted as a mu antagonist, as measured by the inhibition of morphine-induced antinociception.
-
J. Pharmacol. Exp. Ther. · Nov 2005
Effect of morphine on deep dorsal horn projection neurons depends on spinal GABAergic and glycinergic tone: implications for reduced opioid effect in neuropathic pain.
The mu opioid agonist morphine has distinct effects on spinal dorsal horn neurons in the superficial and deep laminae. However, it is not clear if the inhibitory effect of morphine on dorsal horn projection neurons is secondary to its potentiating effect on inhibitory interneurons. In this study, we tested the hypothesis that removal of GABAergic and glycinergic inhibitory inputs attenuates the effect of morphine on dorsal horn projection neurons and the reduced spinal GABAergic tone contributes to attenuated morphine effect in neuropathic pain. ⋯ On the other hand, the glycine receptor antagonist strychnine (4 microM) significantly decreased the effect of morphine in both nerve-injured and control animals. These data suggest that the inhibitory effect of opioids on dorsal horn projection neurons depends on GABAergic and glycinergic inputs. Furthermore, reduced GABAergic tone probably contributes to diminished analgesic effect of opioids in neuropathic pain.
-
J. Pharmacol. Exp. Ther. · Nov 2005
Glycyl-glutamine, an endogenous beta-endorphin-derived peptide, inhibits morphine-induced conditioned place preference, tolerance, dependence, and withdrawal.
Glycyl-glutamine (Gly-Gln; beta-endorphin(30-31)) is an endogenous dipeptide synthesized from beta-endorphin(1-31). Previous investigations have shown that Gly-Gln inhibits the cardiovascular and respiratory depression caused by morphine and beta-endorphin(1-31), but it does not interfere with opioid analgesia. In this study, we tested whether Gly-Gln administration would influence morphine-induced conditioned place preference, tolerance, dependence, or withdrawal. ⋯ Morphine dependence and withdrawal were assessed by measuring naloxone-precipitated withdrawal symptoms. Glycyl-glutamine inhibited the development of morphine dependence when given to rats twice daily immediately before they received morphine (10 mg/kg i.p.) and suppressed withdrawal symptoms of rats with subcutaneously implanted morphine pellets when administered 5 min before withdrawal was induced with naloxone. Glycyl-glutamine thus attenuates morphine-induced conditioned place preference, tolerance, dependence, and withdrawal without compromising morphine analgesia.