The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Nov 2007
Pharmacology and antitussive efficacy of 4-(3-trifluoromethyl-pyridin-2-yl)-piperazine-1-carboxylic acid (5-trifluoromethyl-pyridin-2-yl)-amide (JNJ17203212), a transient receptor potential vanilloid 1 antagonist in guinea pigs.
Transient receptor potential vanilloid 1 (TRPV1) plays an integral role in modulating the cough reflex, and it is an attractive antitussive drug target. The purpose of this study was to characterize a TRPV1 antagonist, 4-(3-trifluoromethyl-pyridin-2-yl)-piperazine-1-carboxylic acid (5-trifluoromethyl-pyridin-2-yl)-amide (JNJ17203212), against the guinea pig TRPV1 receptor in vitro followed by a proof-of-principle study in an acid-induced model of cough. The affinity of JNJ17203212 for the recombinant guinea pig TRPV1 receptor was estimated by radioligand binding, and it was functionally characterized by antagonism of low-pH and capsaicin-induced activation of the ion channel (fluorometric imaging plate reader and electrophysiology). ⋯ Intraperitoneal administration of 20 mg/kg JNJ17203212 achieved a maximal plasma exposure of 8.0 +/- 0.4 microM, and it attenuated capsaicin evoked coughs with similar efficacy to codeine (25 mg/kg). Last, JNJ17203212 dose-dependently produced antitussive efficacy in citric acid-induced experimental cough in guinea pigs. Our data provide preclinical support for developing TRPV1 antagonists for the treatment of cough.
-
J. Pharmacol. Exp. Ther. · Nov 2007
The endogenous cannabinoid anandamide inhibits cromakalim-activated K+ currents in follicle-enclosed Xenopus oocytes.
The effect of the endogenous cannabinoid anandamide on K(+) currents activated by the ATP-sensitive potassium (K(ATP)) channel opener cromakalim was investigated in follicle-enclosed Xenopus oocytes using the two-electrode voltage-clamp technique. Anandamide (1-90 microM) reversibly inhibited cromakalim-induced K(+) currents, with an IC(50) value of 8.1 +/- 2 microM. Inhibition was noncompetitive and independent of membrane potential. ⋯ In radioligand binding studies, anandamide inhibited the specific binding of the K(ATP) ligand [(3)H]glibenclamide in the oocyte microsomal fractions, with an IC(50) value of 6.3 +/- 0.4 microM. Gonadotropin-induced oocyte maturation and the cromakalim-acceleration of progesterone-induced oocyte maturation were significantly inhibited in the presence of 10 microM anandamide. Collectively, these results indicate that cromakalim-activated K(+) currents in follicular cells of Xenopus oocytes are modulated by anandamide via a cannabinoid receptor-independent mechanism and that the inhibition of these channels by anandamide alters the responsiveness of oocytes to gonadotropin and progesterone.
-
J. Pharmacol. Exp. Ther. · Nov 2007
Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis.
FTY720 [2-amino-2-[2-(4-octylphenyl) ethyl]propane-1,3-diol hydrochloride] is an oral sphingosine-1-phosphate receptor modulator under development for the treatment of multiple sclerosis (MS). The drug is phosphorylated in vivo by sphingosine kinase 2 to its bioactive form, FTY720-P. Although treatment with FTY720 is accompanied by a reduction of the peripheral lymphocyte count, its efficacy in MS and experimental autoimmune encephalomyelitis (EAE) may be due to additional, direct effects in the central nervous system (CNS). ⋯ Brain trough levels of FTY720 and FTY720-P in rat EAE are of the same magnitude and dose dependently increase; they are in the range of 40 to 540 ng/g in the brain tissue at efficacious doses and exceed blood concentrations severalfold. In a rat model of chronic EAE, prolonged treatment with 0.03 mg/kg was efficacious, but limiting the dosing period failed to prevent EAE despite a significant decrease in blood lymphocytes. FTY720 effectiveness is likely due to a culmination of mechanisms involving reduction of autoreactive T cells, neuroprotective influence of FTY720-P in the CNS, and inhibition of inflammatory mediators in the brain.