The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Feb 2007
Role of gamma-aminobutyric acid (GABA)A and GABAB receptors in paraventricular nucleus in control of sympathetic vasomotor tone in hypertension.
The paraventricular nucleus (PVN) of the hypothalamus is involved in tonic regulation of sympathetic outflow. Impaired GABAergic control of PVN neurons may contribute to the elevated sympathetic drive in hypertension. In this study, we examined the function of GABA(A) and GABA(B) receptors in the PVN in control of sympathetic nerve activity and arterial blood pressure (ABP) in normotensive and hypertensive rats. ⋯ However, in WKY and SD rats, baclofen only decreased LSNA and ABP at the highest dose tested. In addition, blockade of GABA(B) receptors in the PVN with CGP52432 (3-[[(3,4-dichlorophenyl)methyl]amino]propyl]diethoxymethyl)phosphinic acid) (0.15-3.0 nmol) dose-dependently increased LSNA and ABP in SHRs but not in normotensive controls. Collectively, this study provides new evidence that GABA(A) receptor function is attenuated, whereas the function of GABA(B) receptors is enhanced, in the PVN of SHRs.
-
J. Pharmacol. Exp. Ther. · Feb 2007
SR 16435 [1-(1-(bicyclo[3.3.1]nonan-9-yl)piperidin-4-yl)indolin-2-one], a novel mixed nociceptin/orphanin FQ/mu-opioid receptor partial agonist: analgesic and rewarding properties in mice.
We identified a novel nociceptin/orphanin FQ (NOP)/mu-opioid receptor agonist, SR 16435 [1-(1-(bicyclo[3.3.1]nonan-9-yl)piperidin-4-yl)indolin-2-one], with high binding affinity and partial agonist activity at both receptors. It was hypothesized that SR 16435 would produce antinociception and yet, unlike morphine, would have diminished rewarding properties and tolerance development. Antinociception was assessed in mice using the tail-flick assay, whereas behavioral and rewarding effects were assessed using the place conditioning (PC) paradigm. ⋯ NOP agonist activity was also present, given that SR 16435 decreased global activity, and this effect was partially reversed with the selective NOP antagonist, SR 16430 [1-(cyclooctylmethyl)-4-(3-(trifluoromethyl)phenyl)piperidin-4-ol]. Naloxone, however, also reversed the SR 16435-induced decrease in activity, indicating that both opioid and NOP receptors mediate this behavior. In summary, the mixed NOP/mu-opioid partial agonist SR 16435 exhibited both NOP and mu-opioid receptor-mediated behaviors.