The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Aug 2007
Benzodiazepine withdrawal-induced glutamatergic plasticity involves up-regulation of GluR1-containing alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in Hippocampal CA1 neurons.
Modification of glutamatergic synaptic function, a mechanism central to neuronal plasticity, may also mediate long-term drug effects, including dependence and addiction. Benzodiazepine withdrawal results in increased glutamatergic strength, but whether alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors (AMPARs) are functionally and structurally remodeled during benzodiazepine withdrawal is uncertain. Whole-cell recordings of rat hippocampal CA1 neurons, either acutely dissociated or in hippocampal slices, revealed that AMPAR function was enhanced up to 50% during flurazepam (FZP) withdrawal, without changes in whole-cell channel kinetic properties. ⋯ As with long-term potentiation (LTP), the FZP-withdrawal-induced GluR1 incorporation into CA1 neuron membranes may require the GluR1-trafficking protein, synapse-associated protein 97, which was also elevated in membrane-associated fractions. Together, our findings provide evidence that during FZP withdrawal, increased membrane incorporation of GluR1-containing AMPARs and associated up-regulation of AMPAR functions in hippocampal CA1 pyramidal neurons share fundamental similarities with the mechanisms underlying LTP. This implies that glutamatergic neuronal remodeling observed in LTP also subserves physiological adaptations to drug withdrawal.
-
J. Pharmacol. Exp. Ther. · Aug 2007
Mechanisms responsible for the enhanced antinociceptive effects of micro-opioid receptor agonists in the rostral ventromedial medulla of male rats with persistent inflammatory pain.
This study investigated three possible mechanisms by which the antinociceptive effects of the mu-opioid receptor (MOR) agonist [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) and the delta-opioid receptor (DOR) agonist [d-Ala(2),Glu(4)]-deltorphin (deltorphin II) (DELT), microinjected into the rostral ventromedial medulla (RVM), are enhanced in rats with persistent inflammatory injury. Radioligand binding determined that neither the B(max) nor the K(d) values of [(3)H]DAMGO differed in RVM membranes from rats that received an intraplantar injection of saline or complete Freund's adjuvant (CFA) in one hindpaw 4 h, 4 days, or 2 weeks earlier. Likewise, neither the EC(50) nor the E(max) value for DAMGO-induced stimulation of guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding differed in the RVM of saline- or CFA-treated rats at any time point. ⋯ Rather, the data are concordant with our proposal that potentiation results from a synergistic interaction of exogenous MOR agonist with DOR-preferring enkephalins whose levels are increased in CFA-treated rats (J Neurosci 21:2536-2545, 2001). Virtually no specific [(3)H]DELT binding nor stimulation of [(35)S]GTPgammaS binding by DELT was obtained in RVM membranes from CFA- or saline-treated rats at any time point. The mechanisms responsible for the potentiation of DELT-mediated antinociception remain to be elucidated.
-
J. Pharmacol. Exp. Ther. · Aug 2007
Neuroprotection with erythropoietin administration following controlled cortical impact injury in rats.
This study was designed to determine the effect of erythropoietin (Epo) on cerebral blood flow (CBF), nitric oxide (NO) concentration, and neurological outcome after traumatic brain injury. In one experiment, the hemodynamic effects of Epo were determined after controlled cortical impact injury (CCII) by measuring mean arterial pressure, intracranial pressure, CBF using laser Doppler flowmetry, and brain tissue NO concentrations using an NO electrode. In total, 41 rats were given either Epo (5000 U/kg) or saline s.c. 3 days before injury. ⋯ The contusion volume was significantly reduced at 5 min, 1 h, 3 h, and 6 h postinjury Epo administration. The neuron density in the CA1 and CA3 region of the hippocampus was increased at 1, 3, and 6 h after injury. These data demonstrate the neuroprotective effects of Epo in traumatic injury, and the effects are optimal when Epo is given within 6 h of injury.
-
J. Pharmacol. Exp. Ther. · Aug 2007
Distinct Ca2+ requirement for NO production between proteinase-activated receptor 1 and 4 (PAR1 and PAR4) in vascular endothelial cells.
Proteinase-activated receptors 1 and 4 (PAR(1) and PAR(4)) are the major receptors mediating thrombin-induced NO production in endothelial cells. The intracellular signaling following their activation still remains to be elucidated. The present study provides the first evidence for the distinct Ca(2+) requirement for the NO production between PAR(1) and PAR(4). ⋯ An immunoblot analysis revealed a transient increase in the phosphorylation of Akt and endothelial NO synthase following the PAR(4) stimulation. In conclusion, PAR(1) and PAR(4) engage distinct signal transduction mechanisms to activate NO production in vascular endothelial cells. PAR(4) preferably activates Galpha(i/o) and induced NO production in a manner mostly independent of Ca(2+) but dependent on the PI3K/Akt pathway, whereas PAR(1) activates both the Ca(2+)-dependent and -independent mechanisms.
-
J. Pharmacol. Exp. Ther. · Aug 2007
CJ-023,423, a novel, potent and selective prostaglandin EP4 receptor antagonist with antihyperalgesic properties.
The prostaglandin (PG) EP(4) receptor subtype is expressed by peripheral sensory neurons. Although a potential role of EP(4) receptor in pain has been suggested, a limited number of selective ligands have made it difficult to explore the physiological functions of EP(4) or its potential as a new analgesic target. Here, we describe the in vitro and in vivo pharmacology of a novel EP(4) receptor antagonist, N-[({2-[4-(2-ethyl-4,6-dimethyl-1H-imidazo [4,5-c] pyridin-1-yl) phenyl]ethyl}amino) carbonyl]-4-methylbenzenesulfonamide (CJ-023,423). ⋯ Furthermore, CJ-023,423 significantly reverses complete Freund's adjuvant-induced chronic inflammatory pain response. Taken together, the present data indicate that CJ-023,423, a highly potent and selective antagonist of both human and rat EP(4) receptors, produces antihyperalgesic effects in animal models of inflammatory pain. Thus, specific blockade of the EP(4) receptor signaling may represent a novel therapeutic approach for the treatment of inflammatory pain.