The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Jan 2009
Characterization of a cannabinoid CB2 receptor-selective agonist, A-836339 [2,2,3,3-tetramethyl-cyclopropanecarboxylic acid [3-(2-methoxy-ethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]-amide], using in vitro pharmacological assays, in vivo pain models, and pharmacological magnetic resonance imaging.
Studies demonstrating the antihyperalgesic and antiallodynic effects of cannabinoid CB(2) receptor activation have been largely derived from the use of receptor-selective ligands. Here, we report the identification of A-836339 [2,2,3,3-tetramethyl-cyclopropanecarboxylic acid [3-(2-methoxy-ethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]-amide], a potent and selective CB(2) agonist as characterized in in vitro pharmacological assays and in in vivo models of pain and central nervous system (CNS) behavior models. In radioligand binding assays, A-836339 displays high affinities at CB(2) receptors and selectivity over CB(1) receptors in both human and rat. ⋯ Furthermore, no tolerance was developed in the CCI model after subchronic treatment with A-836339 for 5 days. In assessing CNS effects, A-836339 exhibited a CB(1) receptor-mediated decrease of spontaneous locomotor activities at a higher dose, a finding consistent with the CNS activation pattern observed by pharmacological magnetic resonance imaging. These data demonstrate that A-836339 is a useful tool for use of studying CB(2) receptor pharmacology and for investigation of the role of CB(2) receptor modulation for treatment of pain in preclinical animal models.
-
J. Pharmacol. Exp. Ther. · Jan 2009
A novel and orally active poly(ADP-ribose) polymerase inhibitor, KR-33889 [2-[methoxycarbonyl(4-methoxyphenyl) methylsulfanyl]-1H-benzimidazole-4-carboxylic acid amide], attenuates injury in in vitro model of cell death and in vivo model of cardiac ischemia.
Blocking of poly(ADP-ribose) polymerase (PARP)-1 has been expected to protect the heart from ischemia-reperfusion injury. We have recently identified a novel and orally active PARP-1 inhibitor, KR-33889 [2-[methoxycarbonyl(4-methoxyphenyl)-methylsulfanyl]-1H-benzimidazole-4-carboxylic acid amide], and its major metabolite, KR-34285 [2-[carboxy(4-methoxyphenyl)methylsulfanyl]-1H-benzimidazole-4-carboxylic acid amide]. KR-33889 potently inhibited PARP-1 activity with an IC(50) value of 0.52 +/- 0.10 microM. ⋯ Furthermore, the oral administration of KR-33889 (1-10 mg/kg p.o.) at 1 h before occlusion significantly reduced myocardial injury. The ability of KR-33889 to inhibit PARP in the rat model of ischemic heart was confirmed by immunohistochemical detection of poly(ADP-ribose) activation. These results indicate that the novel PARP inhibitor KR-33889 exerts its cardioprotective effect in in vitro and in vivo studies of myocardial ischemia via potent PARP inhibition and also suggest that KR-33889 could be an attractive therapeutic candidate with oral activity for several cardiovascular disorders, including myocardial infarction.
-
J. Pharmacol. Exp. Ther. · Jan 2009
Effects of atypical kappa-opioid receptor agonists on intrathecal morphine-induced itch and analgesia in primates.
Itch/pruritus is the most common side effect associated with spinal administration of morphine given to humans for analgesia. The aim of this study was to investigate the effectiveness of kappa-opioid receptor (KOR) agonists with diverse chemical structures as antipruritics and to elucidate the receptor mechanism underlying the antipruritic effect in monkeys. In particular, previously proposed non-KOR-1 agonists, including nalfurafine [TRK-820, 17-cyclopropylmethyl-3,14 beta-dihydroxy-4,5 alpha-epoxy-6 beta-[N-methyl-trans-3-(3-furyl)acrylamido]morphinan], bremazocine [(+/-)-6-ethyl-1,2,3,4,5,6-hexahydro-3-[(1-hydroxycyclopropy)-methyl]-11,11-dimethyl-2,6-methano-3-benzazocin-8-ol], and GR 89696 [4-[(3,4-dichlorophenyl)acetyl]-3-(1-pyrrolidinylmethyl)-1-piperazinecarboxylic acid methyl ester] were studied in various behavioral assays for measuring itch/scratching, analgesia, and respiratory depression. ⋯ Furthermore, the KOR antagonist study revealed that antiscratching effects of both nalfurafine and a prototypical KOR-1 agonist, U-50488H [trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]-cyclohexyl)-benzeneacetamide], could be blocked completely by a selective KOR antagonist, nor-binaltorphimine (3 mg/kg). These findings suggest that the agonist action on KOR mainly contributes to the effectiveness of these atypical KOR agonists as antipruritics, and there is no evidence for KOR subtypes or mu-opioid antagonist action underlying the effects of these KOR agonists. This mechanism-based study further supports the clinical potential of KOR agonists as antipruritics under the context of spinal opioid analgesia.