The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Apr 2013
ReviewMending leaky blood vessels: the angiopoietin-Tie2 pathway in sepsis.
Sepsis is a systemic inflammatory response to infection. A common end-feature, these patients regularly suffer from is the so-called multiple organ dysfunction syndrome, an often fatal consequence of organ hypoperfusion, coagulopathy, immune dysregulation,and mitochondrial dysfunction. ⋯ The balance between the canonical agonist Angpt-1 and its competitive inhibitor, Angpt-2, regulates basal endothelial barrier function and the leakage and vascular inflammation that develop in response to pathogens and cytokines. Here we summarize recent work in mice and men to highlight the therapeutic potential in this pathway to prevent or even reverse microvascular dysfunction in this deadly disease.
-
J. Pharmacol. Exp. Ther. · Apr 2013
Group I mGluRs evoke K-ATP current by intracellular Ca2+ mobilization in rat subthalamus neurons.
We reported previously that Ca(2+) influx through N-methly-d-aspartate-gated channels evokes ATP-sensitive K(+) (K-ATP) currents in rat subthalamic nucleus (STN) neurons. By using whole-cell patch clamp recordings in brain slices, we investigated the ability of (RS)-3,5-dihydroxyphenylglycine (DHPG), a group I metabotropic glutamate receptor (mGluR) agonist, to evoke K-ATP currents. DHPG (20 µM) evoked outward current at -70 mV and was associated with a positive slope conductance of 2.7 nS. ⋯ Voltage recordings showed that tolbutamide prolonged depolarizing plateau potentials and increased the spontaneous firing rate of STN neurons recorded in the presence of DHPG. These results show that group I mGluR stimulation generates K-ATP current by a nitric oxide- and protein kinase G-dependent process that is mediated by release of Ca(2+) from intracellular stores. Because burst firing is linked to symptoms of Parkinson's disease, we suggest that K-ATP channels might provide a physiologically important inhibitory influence on STN neuronal activity.
-
J. Pharmacol. Exp. Ther. · Apr 2013
Upregulation of nuclear factor of activated T-cells by nerve injury contributes to development of neuropathic pain.
Nerve injury induces long-term changes in gene expression in the nociceptive circuitry and can lead to chronic neuropathic pain. However, the transcriptional mechanism involved in neuropathic pain is poorly understood. Nuclear factor of activated T-cells (NFATc) is a transcriptional factor regulated by the Ca(2+)-dependent protein phosphatase calcineurin. ⋯ In addition, treatment with FK-506 or 11R-VIVIT significantly reduced the mRNA levels of NFATc4 and CCR2 but not large-conductance Ca(2+)-activated K(+) channels, in the DRG after nerve injury. Our findings suggest that peripheral nerve injury causes a time-dependent change in NFATc1-c4 expression in the DRG. Calcineurin-NFATc-mediated expression of pronociceptive cytokines contributes to the transition from acute to chronic pain after nerve injury.