The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Feb 2018
Impaired Pulmonary Arterial Vasoconstriction and Nitric Oxide-Mediated Relaxation Underlie Severe Pulmonary Hypertension in the Sugen-Hypoxia Rat Model.
Pulmonary vasoreactivity could determine the responsiveness to vasodilators and, in turn, the prognosis of pulmonary hypertension (PH). We hypothesized that pulmonary vasoreactivity is impaired, and we examined the underlying mechanisms in the Sugen-hypoxia rat model of severe PH. Male Sprague-Dawley rats were injected with Sugen (20 mg/kg s.c.) and exposed to hypoxia (9% O2) for 3 weeks, followed by 4 weeks in normoxia (Su/Hx), or treated with Sugen alone (Su) or hypoxia alone (Hx) or neither (Nx). ⋯ Neither contraction nor relaxation differed in the aorta or mesenteric arteries of all groups. PCR analysis showed decreased expression of contractile markers in pulmonary artery of Su/Hx versus Nx. The reduced responsiveness to vasoconstrictors and NO-mediated vasodilation in the pulmonary, but not systemic, vessels may be an underlying mechanism of severe PH in Su/Hx rats and appears to involve attenuation of the NO relaxation pathway and a switch of pulmonary VSM cells to a synthetic less reactive phenotype.