The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Oct 2000
Evidence for peroxynitrite formation in renal ischemia-reperfusion injury: studies with the inducible nitric oxide synthase inhibitor L-N(6)-(1-Iminoethyl)lysine.
Reactive oxygen species are suggested to participate in ischemia-reperfusion (I-R) injury. However, induction of inducible nitric oxide synthase (iNOS) and production of high levels of nitric oxide (NO) also contribute to this injury. NO can combine with superoxide to form the potent oxidant peroxynitrite (ONOO(-)). ⋯ Immunohistochemistry and HPLC revealed that the kidneys from I-R animals had increased levels of 3-nitrotyrosine-protein adducts compared with control animals. L-NIL-treated rats (3 mg/kg) subjected to I-R showed decreased levels of 3-nitrotyrosine-protein adducts. These results support the hypothesis that iNOS-generated NO mediates damage in I-R injury possibly through ONOO(-) formation.
-
J. Pharmacol. Exp. Ther. · Oct 2000
Antinociceptive effect of pregabalin in septic shock-induced rectal hypersensitivity in rats.
Pregabalin [S-(+)-3-isobutylgaba] is a novel compound under development for its analgesic, anxiolytic, and anticonvulsant properties, and its interaction with the alpha(2)delta-subunit of voltage-dependent Ca(2+) channels. In this study, we investigate the antinociceptive activity of pregabalin in a rat model of delayed visceral hyperalgesia induced by i.p. lipopolysaccharide (LPS) administration. LPS (Escherichia coli, serotype O111:B4) leads to a delayed lowering threshold (9-12 h) of abdominal contractions in response to rectal distension (RD) in awake rats surgically prepared for electromyography of abdominal muscles. ⋯ When administered 2 h before RD (but preceded 12 h by LPS injection), the oral dose of 10 mg/kg was effective both in the allodynic response induced by LPS and in the intensity of the nociceptive response related to RD. Pretreatment by either naloxone or bicuculline (a GABA(A) antagonist, 0.5 mg/kg i.p.) did not affect the antiallodynic effect of pregabalin. We conclude that pregabalin is a therapeutic candidate in the treatment of gut hypersensitivity not acting through GABA(A) and opiate receptors.
-
J. Pharmacol. Exp. Ther. · Oct 2000
Discovery of "self-synergistic" spinal/supraspinal antinociception produced by acetaminophen (paracetamol).
The mechanism of the analgesic action of one of the world's most widely used drugs-acetaminophen (paracetamol)-remains largely unknown more than 100 years after its original synthesis. Based on the present findings, this elusiveness appears to have resulted from experimental strategies that concentrated on a single target site or mechanism. Here we report on the use of analyses that we previously developed to investigate possible brain/spinal-cord site-site interaction in acetaminophen-induced antinociception. ⋯ E. = 9) microgram, that reverted toward additivity, ED(50) = 129 (S. E. = 23) microgram, when the opioid antagonist naloxone was given spinally (3.6 microgram = 10 nmol) or s.c. (3.6 mg/kg). These findings demonstrate for the first time that acetaminophen-induced antinociception involves a "self-synergistic" interaction between spinal and supraspinal sites and, furthermore, that the self-synergy involves an endogenous opioid pathway.
-
J. Pharmacol. Exp. Ther. · Oct 2000
Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors.
STI571 (formerly known as CGP 57148B) is a protein-tyrosine kinase inhibitor that is currently in clinical trials for the treatment of chronic myelogenous leukemia. STI571 selectively inhibits the Abl and platelet-derived growth factor (PDGF) receptor tyrosine kinases in vitro and blocks cellular proliferation and tumor growth of Bcr-abl- or v-abl-expressing cells. We have further investigated the profile of STI571 against related receptor tyrosine kinases. ⋯ Additionally, no inhibition of c-Met or nonreceptor tyrosine kinases such as Src and Jak-2 has been observed. In cell-based assays, STI571 selectively inhibited PDGF and stem cell factor-mediated cellular signaling, including ligand-stimulated receptor autophosphorylation, inositol phosphate formation, and mitogen-activated protein kinase activation and proliferation. These results expand the profile of STI571 and suggest that in addition to chronic myelogenous leukemia, STI571 may have clinical potential in the treatment of diseases that involve abnormal activation of c-Kit or PDGF receptor tyrosine kinases.
-
J. Pharmacol. Exp. Ther. · Sep 2000
Differential mechanisms mediating descending pain controls for antinociception induced by supraspinally administered endomorphin-1 and endomorphin-2 in the mouse.
We have previously demonstrated that both endomorphin-1 and endomorphin-2 produce their antinociception by the stimulation of mu-opioid receptors. However, the antinociception induced by endomorphin-2 contains an additional component, which is mediated by the release of dynorphin A (1-17) acting on kappa-opioid receptors. These studies were done to determine whether the antinociception induced by endomorphin-1 and endomorphin-2 given supraspinally was mediated by the activation of different descending pain control pathways in the mouse. ⋯ Intrathecal pretreatment with antiserum against Leu-enkephalin or beta-endorphin did not inhibit i.c.v.-administered endomorphin-1- or endomorphin-2-induced antinociception. The results indicate that, like other opioid micro-receptor agonists, morphine, and [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin, endomorphin-1 and endomorphin-2 given i.c.v. produce antinociception by activating spinipetal noradrenergic and serotonergic pathways for producing antinociception. However, the antinociception induced by endomorphin-2 given i.c.v. also contains other components, which are mediated by the release of Met-enkephalin and dynorphin A (1-17) acting on opioid delta(2)- and kappa-receptors, respectively, in the spinal cord.