The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Dec 2018
Brain-Permeant and -Impermeant Inhibitors of Fatty Acid Amide Hydrolase Synergize with the Opioid Analgesic Morphine to Suppress Chemotherapy-Induced Neuropathic Nociception Without Enhancing Effects of Morphine on Gastrointestinal Transit.
Opioid-based therapies remain a mainstay for chronic pain management, but unwanted side effects limit therapeutic use. We compared efficacies of brain-permeant and -impermeant inhibitors of fatty acid amide hydrolase (FAAH) in suppressing neuropathic pain induced by the chemotherapeutic agent paclitaxel. Paclitaxel produced mechanical and cold allodynia without altering nestlet shredding or marble burying behaviors. ⋯ A leftward shift in the dose-response curve of morphine antinociception was observed when morphine was coadministered with either URB597 or URB937, consistent with morphine sparing. However, neither URB937 nor URB597 enhanced morphine-induced deficits in colonic transit. Thus, our findings suggest that FAAH inhibition may represent a therapeutic avenue to reduce the overall amount of opioid needed for treating neuropathic pain with potential to reduce unwanted side effects that accompany opioid administration.
-
J. Pharmacol. Exp. Ther. · Nov 2018
In Vitro Pharmacological Characterization of Buprenorphine, Samidorphan, and Combinations Being Developed as an Adjunctive Treatment of Major Depressive Disorder.
A combination of buprenorphine (BUP) and samidorphan (SAM) at a 1:1 (mg/mg) fixed-ratio dose is being investigated as an adjunctive treatment of major depressive disorder (BUP/SAM, ALKS 5461). Both [3H]BUP and [3H]SAM bound to the μ-, κ-, and δ-opioid receptors (MOR, KOR, and DOR, respectively) with Kd values of 3 nM or less. [3H]BUP dissociated from the MOR more slowly than [3H]SAM did. In the [35S]GTPγS assay, BUP was a partial agonist at the MOR, KOR, and DOR. ⋯ At the KOR, SAM had no significant effect on the activity of BUP. In bioluminescent resonance energy transfer assays, SAM, naltrexone, and naloxone were partial agonists when the MOR was coupled to the GαoB and Gαz, and were antagonists when coupled to Gαi At the KOR, SAM was a partial agonist activating GαoA and GαoB and a full agonist in stimulating Gαz SAM inhibited BUP's recruitment of β-arrestin to the MOR, suggesting an attenuation of BUP's efficacy in activating G proteins correlated with an inhibition of β-arrestin recruitment. The collective data suggest that SAM attenuates the efficacy of BUP under all conditions tested at the MOR and DOR but had little effect on BUP activity at the KOR.
-
J. Pharmacol. Exp. Ther. · Aug 2018
Characterization of the Neurochemical and Behavioral Effects of Solriamfetol (JZP-110), a Selective Dopamine and Norepinephrine Reuptake Inhibitor.
Excessive sleepiness (ES) is associated with several sleep disorders, including narcolepsy and obstructive sleep apnea (OSA). A role for monoaminergic systems in treating these conditions is highlighted by the clinical use of US Food and Drug Administration-approved drugs that act on these systems, such as dextroamphetamine, methylphenidate, modafinil, and armodafinil. Solriamfetol (JZP-110) is a wake-promoting agent that is currently being evaluated to treat ES in patients with narcolepsy or OSA. ⋯ Moreover, the wake-promoting effects of solriamfetol are probably owing to activity at DA and NE transporters rather than other neurotransmitter systems, such as histamine or orexin. The dual activity of solriamfetol at DA and NE transporters and the lack of significant monoamine-releasing properties of solriamfetol might explain the differences in the in vivo effects of solriamfetol compared with modafinil or amphetamine. Taken together, these data suggest that solriamfetol may offer an important advancement in the treatment of ES in patients with narcolepsy or OSA.
-
J. Pharmacol. Exp. Ther. · May 2018
Molecular and Behavioral Pharmacological Characterization of Abused Synthetic Cannabinoids MMB- and MDMB-FUBINACA, MN-18, NNEI, CUMYL-PICA, and 5-Fluoro-CUMYL-PICA.
Synthetic cannabinoids are a class of novel psychoactive substances that exhibit high affinity at the cannabinoid type-1 (CB1) receptor and produce effects similar to those of Δ-9-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis. Illicit drug manufacturers are continually circumventing laws banning the sale of synthetic cannabinoids by synthesizing novel structures and doing so with little regard for the potential impact on pharmacological and toxicological effects. Synthetic cannabinoids produce a wide range of effects that include cardiotoxicity, seizure activity, and kidney damage, and they can cause death. ⋯ Additionally, all six synthetic cannabinoids substituted for THC in drug discrimination, suggesting they probably possess subjective effects similar to those of cannabis. Notably, MDMB-FUBINACA, a methylated analog of MMB-FUBINACA, had higher affinity for CB1 than the parent, showing that minor structural modifications being introduced can have a large impact on the pharmacological properties of these drugs. This study demonstrates that novel structures being sold and used illicitly as substitutes for cannabis are retaining high affinity at the CB1 receptor, exhibiting greater efficacy than THC, and producing THC-like effects in models relevant to subjective effects in humans.
-
J. Pharmacol. Exp. Ther. · Feb 2018
Impaired Pulmonary Arterial Vasoconstriction and Nitric Oxide-Mediated Relaxation Underlie Severe Pulmonary Hypertension in the Sugen-Hypoxia Rat Model.
Pulmonary vasoreactivity could determine the responsiveness to vasodilators and, in turn, the prognosis of pulmonary hypertension (PH). We hypothesized that pulmonary vasoreactivity is impaired, and we examined the underlying mechanisms in the Sugen-hypoxia rat model of severe PH. Male Sprague-Dawley rats were injected with Sugen (20 mg/kg s.c.) and exposed to hypoxia (9% O2) for 3 weeks, followed by 4 weeks in normoxia (Su/Hx), or treated with Sugen alone (Su) or hypoxia alone (Hx) or neither (Nx). ⋯ Neither contraction nor relaxation differed in the aorta or mesenteric arteries of all groups. PCR analysis showed decreased expression of contractile markers in pulmonary artery of Su/Hx versus Nx. The reduced responsiveness to vasoconstrictors and NO-mediated vasodilation in the pulmonary, but not systemic, vessels may be an underlying mechanism of severe PH in Su/Hx rats and appears to involve attenuation of the NO relaxation pathway and a switch of pulmonary VSM cells to a synthetic less reactive phenotype.