The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Dec 2007
Deletion of mu-opioid receptor in mice alters the development of acute neuroinflammation.
The realization that the mu-opioid system plays a key role in the control of the process of neuroinflammation is a new concept that may lead to identification of novel therapies for this extremely widespread and intractable syndrome. Fever is the hallmark among the defense mechanisms evoked by the entry into the body of pathogens to initiate the innate immune responses. In an attempt to determine the possible involvement of mu-opioid receptors in the control of brain inflammation, we examined the effect of their deletion on the fever induced by i.c.v. injection of lipopolysaccharide (LPS). ⋯ In the WT, i.c.v. injection of 100 ng of LPS induced fever, but there was no increase in body temperature in the MOP-KO mice. Saline, given i.c.v., did not alter the body temperature, either in WT or MOP-KO. These results show that the mu-opioid system participates in the control of acute neuroinflammation, further reinforcing our earlier finding that the opioid system is involved in the pathogenesis of fever induced by bacterial LPS, and that mu-opioid receptors are the target for morphine-induced hyperthermia.
-
J. Pharmacol. Exp. Ther. · Dec 2007
1-(3',4'-Dichloro-2-fluoro[1,1'-biphenyl]-4-yl)-cyclopropanecarboxylic acid (CHF5074), a novel gamma-secretase modulator, reduces brain beta-amyloid pathology in a transgenic mouse model of Alzheimer's disease without causing peripheral toxicity.
Some nonsteroidal anti-inflammatory drugs has been shown to allosterically modulate the activity of gamma-secretase, the enzymatic complex responsible for the formation of beta-amyloid (Abeta). 1-(3',4'-Dichloro-2-fluoro[1,1'-biphenyl]-4-yl)-cyclopropanecarboxylic acid (CHF5074) is a new gamma-secretase modulator, devoid of anticyclooxygenase (COX) and Notch-interfering activities in vitro. We evaluated the effects of chronic CHF5074 treatment on brain Abeta pathology in Tg2576 transgenic mice. Twenty-eight animals of 9.5 to 10.5 months of age received CHF5074-medicated diet (375 ppm) or standard diet for 17 weeks. ⋯ No abnormal findings were observed upon histopathological examination of the gastrointestinal tract, indicating the absence of COX-related toxicity. Semiquantitative histochemical evaluation of goblet cells in the ileum of vehicle- and CHF5074-treated animals yielded similar results, suggesting no effects on Notch pathway. CHF5074 is therefore a promising therapeutic agent for Alzheimer's disease.
-
J. Pharmacol. Exp. Ther. · Nov 2007
Pharmacology and antitussive efficacy of 4-(3-trifluoromethyl-pyridin-2-yl)-piperazine-1-carboxylic acid (5-trifluoromethyl-pyridin-2-yl)-amide (JNJ17203212), a transient receptor potential vanilloid 1 antagonist in guinea pigs.
Transient receptor potential vanilloid 1 (TRPV1) plays an integral role in modulating the cough reflex, and it is an attractive antitussive drug target. The purpose of this study was to characterize a TRPV1 antagonist, 4-(3-trifluoromethyl-pyridin-2-yl)-piperazine-1-carboxylic acid (5-trifluoromethyl-pyridin-2-yl)-amide (JNJ17203212), against the guinea pig TRPV1 receptor in vitro followed by a proof-of-principle study in an acid-induced model of cough. The affinity of JNJ17203212 for the recombinant guinea pig TRPV1 receptor was estimated by radioligand binding, and it was functionally characterized by antagonism of low-pH and capsaicin-induced activation of the ion channel (fluorometric imaging plate reader and electrophysiology). ⋯ Intraperitoneal administration of 20 mg/kg JNJ17203212 achieved a maximal plasma exposure of 8.0 +/- 0.4 microM, and it attenuated capsaicin evoked coughs with similar efficacy to codeine (25 mg/kg). Last, JNJ17203212 dose-dependently produced antitussive efficacy in citric acid-induced experimental cough in guinea pigs. Our data provide preclinical support for developing TRPV1 antagonists for the treatment of cough.
-
J. Pharmacol. Exp. Ther. · Nov 2007
The endogenous cannabinoid anandamide inhibits cromakalim-activated K+ currents in follicle-enclosed Xenopus oocytes.
The effect of the endogenous cannabinoid anandamide on K(+) currents activated by the ATP-sensitive potassium (K(ATP)) channel opener cromakalim was investigated in follicle-enclosed Xenopus oocytes using the two-electrode voltage-clamp technique. Anandamide (1-90 microM) reversibly inhibited cromakalim-induced K(+) currents, with an IC(50) value of 8.1 +/- 2 microM. Inhibition was noncompetitive and independent of membrane potential. ⋯ In radioligand binding studies, anandamide inhibited the specific binding of the K(ATP) ligand [(3)H]glibenclamide in the oocyte microsomal fractions, with an IC(50) value of 6.3 +/- 0.4 microM. Gonadotropin-induced oocyte maturation and the cromakalim-acceleration of progesterone-induced oocyte maturation were significantly inhibited in the presence of 10 microM anandamide. Collectively, these results indicate that cromakalim-activated K(+) currents in follicular cells of Xenopus oocytes are modulated by anandamide via a cannabinoid receptor-independent mechanism and that the inhibition of these channels by anandamide alters the responsiveness of oocytes to gonadotropin and progesterone.
-
J. Pharmacol. Exp. Ther. · Nov 2007
Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis.
FTY720 [2-amino-2-[2-(4-octylphenyl) ethyl]propane-1,3-diol hydrochloride] is an oral sphingosine-1-phosphate receptor modulator under development for the treatment of multiple sclerosis (MS). The drug is phosphorylated in vivo by sphingosine kinase 2 to its bioactive form, FTY720-P. Although treatment with FTY720 is accompanied by a reduction of the peripheral lymphocyte count, its efficacy in MS and experimental autoimmune encephalomyelitis (EAE) may be due to additional, direct effects in the central nervous system (CNS). ⋯ Brain trough levels of FTY720 and FTY720-P in rat EAE are of the same magnitude and dose dependently increase; they are in the range of 40 to 540 ng/g in the brain tissue at efficacious doses and exceed blood concentrations severalfold. In a rat model of chronic EAE, prolonged treatment with 0.03 mg/kg was efficacious, but limiting the dosing period failed to prevent EAE despite a significant decrease in blood lymphocytes. FTY720 effectiveness is likely due to a culmination of mechanisms involving reduction of autoreactive T cells, neuroprotective influence of FTY720-P in the CNS, and inhibition of inflammatory mediators in the brain.